STUDY OF ORGANIC ACIDS IN THE HERB OF TWO ANEMONE L. SPECIES

Authors

DOI:

https://doi.org/10.11603/2312-0967.2025.2.15280

Keywords:

Ranunculaceae, Anemone, herb, organic acids, gas chromatography-mass-spectrometry, ascorbic acid, phytochemical studies, qualitative composition, quantitative composition, medicinal plants

Abstract

The aim of the work. Identification and quantitative determination of organic acids in the herb of two Anemone species.

Materials and Methods. The research objects were the herbs of Anemone (A.) nemorosa and Anemone ranunculoides harvested in Ivano-Frankivsk region in 2023. Organic acids were identified using the GC/MS method. Chromatographic separation was performed on a GC/MS system Agilent 6890N/5973inert (Agilent Technologies, USA). Quantitative determination of free organic acids and ascorbic acid was carried out by titrimetric methods.

Results and Discussion. The GC/MS method allowed for the identification and quantification of 7 organic acids in the herb of A nemorosa L. and 8 – in A. ranunculoides L., respectively.

Using the titrimetric method, the highest content of organic acids was found in the raw material of A. nemorosa collected near the Pavlivka village, Ivano-Frankivsk region – 0.91 ± 0.01 %. The maximum ascorbic acid content was determined in the herb of A. nemorosa collected near the Ozeryany village, Ternopil region (0.11 ± 0.006 %). In the herb of A. ranunculoides, the content of free organic acids and ascorbic acid amounted to 0.90 ± 0,01 % and 0.07 ± 0,009 %, respectively.

Conclusions. The component composition of organic acids was determined in the samples of Anemone nemorosa and Anemone ranunculoides. The common acids for both species were: oxalic, malonic, succinic, malic, glutaric, and citric acids. In both Anemone nemorosa L. and Anemone ranunculoides L., malic acid was predominant (693.07 and 385.46 µg/g, respectively).

Titrimetric determination of the total content of organic acids and ascorbic acid in the aerial parts indicates variability of these parameters depending on the location of raw material collection.

The results obtained provide a foundation for further phytochemical and pharmacological studies.

Author Biographies

L. M. Tuzin, Ivano-Frankivsk National Medical University

PhD-student, Assistant of Department of Pharmaceutical Management, Drug Technology and Pharmacognosy

A. R. Grytsyk, Ivano-Frankivsk National Medical University

DSc (Pharmacy), Professor, Head of Department of Pharmaceutical Management, Drug Technology and Pharmacognosy

References

Maslov OY, Kolisnyk SV, Kostina TA, Shovkova ZV, Ahmedov EY, Komisarenko MA. Validation of the Alkalimetry Method for the Quantitative Determination of Free Organic Acids in Raspberry Leaves. J Org Pharm Chem. 2021;19:53-8. DOI: 10.24959/ophcj.21.226278 DOI: https://doi.org/10.24959/ophcj.21.226278

Grytsyk LM, Tuchak NI, Grytsyk AR. Identyfikatsiia ta kilkisne vyznachennia orhanichnykh kyslot u travi vydiv pryvorotnia Farmats. zhurn. 2013;3:83-7. Ukrainian

Hao DC, Gua XJ, Xiao PG. Anemone medicinal plants: ethnopharmacology, phytochemistry and biology. Acta Pharm Sin B. 2017;7(2):146-58. DOI: 10.1016/j.apsb.2016.12.001 DOI: https://doi.org/10.1016/j.apsb.2016.12.001

Grytsyk AR, Tuzin LM. Characteristics and prospects of use of plants of the genus Anemone L. in medicine. Art of Medicine. 2024;1(29):259-65. DOI: 10.21802/artm.2024.1.29.259. Ukrainian DOI: https://doi.org/10.21802/artm.2024.1.29.259

Kumar V, Sharma A, Bhardwaj R, Thukral AM. Analysis of organic acids of tricarboxylic acid cycle in plants using GC-MS, and system modeling. J Anal Sci Technol. 2017;8:20. DOI: 10.1186/s40543-017-0129-6 DOI: https://doi.org/10.1186/s40543-017-0129-6

Benzel IL, Darmogray RE, Benzel LV. Doslidzhennia vmistu askorbinovoi kysloty ta vilnykh orhanichnykh kyslot u fitosubstantsiiakh badanu tovstolystoho. Farmats. zhurn. 2010;2:98–101. Ukrainian

de Oliveira DP, Garcia EF, de Oliveira MA, Candido LCM, Coelho FM, Costa VV, et al. cis-Aconitic Acid, a Constituent of Echinodorus grandiflorus Leaves, Inhibits Antigen-Induced Arthritis and Gout in Mice. Planta Med. 2022;88(13):1123-31. DOI: 10.1055/a-1676-4371. DOI: https://doi.org/10.1055/a-1676-4371

The cosmetic Ingredient Review. Safety Assessment of Levulinic Acid and Sodium Levilinate as Used in Cosmetics [Internet]; 2021. Available from: https://cir-reports.cir-safety.org/cir-ingredient-status-report/?id=1bc38374-01b3-4348-9080-859b960ebf48

Kousar M, Salma U, Khan T, Shah AJ. Antihypertensive Potential of Tartaric Acid and Exploration of Underlying Mechanistic Pathways. Dose-response: a publication of International Hormesis Society. 2022;20(4). DOI: 15593258221135728. DOI: https://doi.org/10.1177/15593258221135728

La Saponaria SRL Societa Benefit [Internet]; 2025. Available from: https://www.la-saponaria.com/glossary/tartaric-acid

Susa F, Pisano R. Advances in Ascorbic Acid (Vitamin C) Manufacturing: Green Extraction Techniques from Natural Sources. Processes 2023;11:3167. DOI: 10.3390/pr11113167 DOI: https://doi.org/10.3390/pr11113167

Cunha-Santos ECE, Viganó J, Neves DA, Martínez J, Godoy HT. Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: Evaluation of extraction and analytical methods. Food Res Int. 2019;115:160–6. DOI: 10.1016/j.foodres.2018.08.031 DOI: https://doi.org/10.1016/j.foodres.2018.08.031

Ravetti S, Clemente C, Brignone S, Hergert L, Allemandi D, Palma S. Ascorbic Acid in Skin Health. Cosmetics. 2019;6(4):58. DOI: 10.3390/cosmetics6040058 DOI: https://doi.org/10.3390/cosmetics6040058

Published

2025-06-30

How to Cite

Tuzin, L. M., & Grytsyk, A. R. (2025). STUDY OF ORGANIC ACIDS IN THE HERB OF TWO ANEMONE L. SPECIES. Pharmaceutical Review Farmacevtičnij časopis, (2), 17–22. https://doi.org/10.11603/2312-0967.2025.2.15280

Issue

Section

Phytochemical researches