COVID-19 IN PATIENTS AT RISK OF SEVERE AND COMPLICATED COURSE
DOI:
https://doi.org/10.11603/1681-2727.2024.4.15004Keywords:
respiratory infections, risk factors, diabetes mellitus, pregnancy, endothelial dysfunction, heart failureAbstract
The problems of the course of infectious diseases against the background of concomitant pathology have been of interest to scientists and clinicians for many years. The staff of the Department of Infectious Diseases of Ivano-Frankivsk National Medical University studies both the influence of comorbid conditions on the course of the infectious process and the influence of infectious disease on the state of comorbid pathology. The founder of this idea was Doctor of Medical Sciences, Professor, Head of the Department of Infectious Diseases and Epidemiology from 1991 to 2013 Bohdan Mykolayovych Dykyi.
For many years, significant clinical, laboratory, pathogenetic and therapeutic aspects of the course of viral hepatitis, intestinal infections, leptospirosis, HIV infection, some respiratory infections, parasitosis against the background of concomitant diseases have been studied and the risks that lead to a severe (or complicated) course of both an infectious disease and destabilization of comorbid pathology have been proven.
The emergence of a new strain of coronavirus SARS-CoV-2 in 2019 was a challenge for all of humanity. Although the coronavirus disease COVID-19 has now moved into the category of seasonal respiratory diseases, it nevertheless retains significant potential to cause severe (or complicated) forms of the course, and sometimes with a fatal outcome.
In our comprehensive study, we studied the course of coronavirus disease in patients with underlying diabetes mellitus and chronic cardiovascular pathologies. We also studied some pathogenetic aspects of the course of COVID-19 in pregnant women. During the work, significant pathogenetic mechanisms of the complicated course of the disease were established: in type 2 diabetes mellitus, one of the important links of pathogenetic disorders is endothelial dysfunction and changes in the microvascular bed; factors such as chronic heart failure, reduced ejection fraction, myocardial dysfunction of various types, and pulmonary hypertension have an unfavorable prognostic value. Regarding the course of COVID-19 in pregnant women, despite increased D-dimer levels, pregnancy is not an independent risk factor for severe disease (with the exception of obesity, existing diabetes mellitus, chronic cardiovascular and other concomitant pathology in a pregnant woman).
The publication includes the results of the study, which are fragments of the comprehensive work of the Department of Infectious Diseases and Epidemiology of the Ivano-Frankivsk National Medical University “Course of Infectious Diseases Against the Background of Comorbidity, Combined Chronic Infections and Invasions, Treatment Correction”, with state funding, state registration number: 0119U100571, implementation dates: 2021-2023.
References
COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html (Accessed 06.11.24).
People with Certain Medical Conditions and COVID-19. Risk Factors. CDC. June 24, 2024. https://www.cdc.gov/covid/risk-factors/index.html (Accessed 06.11.24).
Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., Li, Q., Jiang, C., Zhou, Y., Liu, S., Ye, C., Zhang, P., Xing, Y., Guo, H., & Tang, W. (2020). Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. The Journal of infection, 81(2), e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021.
Dallavalasa, S., Tulimilli, S.V., Prakash, J., Ramachandra, R., Madhunapantula, S.V., & Veeranna, R.P. (2023). COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens, 12(2), 184. https://doi.org/10.3390/pathogens12020184.
Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., & Yu, T. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 8, 475-481. https://doi.org/10.1016/S2213-2600(20)30079-5.
Jin, Y., Ji, W., Yang, H., Chen, S., Zhang, W., & Duan, G. (2020). Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal transduction and targeted therapy, 5(1), 293. https://doi.org/10.1038/s41392-020-00454-7.
Iba, T., Levy, J. H., Connors, J. M., Warkentin, T. E., Thachil, J., & Levi, M. (2020). The unique characteristics of COVID-19 coagulopathy. Critical care (London, England), 24(1), 360. https://doi.org/10.1186/s13054-020-03077-0.
Jin, Y., Ji, W., Yang, H., Chen, S., Zhang, W., & Duan, G. (2020). Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal transduction and targeted therapy, 5(1), 293. https://doi.org/10.1038/s41392-020-00454-7.
Levy, J. H., Iba, T., & Gardiner, E. E. (2021). Endothelial Injury in COVID-19 and Acute Infections: Putting the Pieces of the Puzzle Together. Arteriosclerosis, thrombosis, and vascular biology, 41(5), 1774-1776. https://doi.org/10.1161/ATVBAHA.121.316101.
Elbadawi, A., Elgendy, I.Y., Sahai, A., Bhandari, R., McCarthy, M., Gomes, M., Bishop, G.J., Bartholomew, J.R., Kapadia, S., & Cameron, S.J. (2021). Incidence and outcomes of thrombotic events in symptomatic patients with COVID-19. Arterioscler Thromb Vasc Biol., 41, 545-547. https://doi.org/10.1161/ATVBAHA.120.315304.
Peacock, T. P., Goldhill, D. H., Zhou, J., Baillon, L., Frise, R., Swann, O. C., Kugathasan, R., Penn, R., Brown, J. C., Sanchez-David, R. Y., Braga, L., Williamson, M. K., Hassard, J. A., Staller, E., Hanley, B., Osborn, M., Giacca, M., Davidson, A. D., Matthews, D. A., & Barclay, W. S. (2021). The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature microbiology, 6(7), 899-909. https://doi.org/10.1038/s41564-021-00908-w.
Briukhanova, T. O., Zagayko, A. L., & Lytkin, D. V. (2020). Pathophysiological mechanisms of coronavirus disease (COVID-19) progression and fatal complications in patients with diabetes. Pathologia, (2). https://doi.org/10.14739/2310-1237.2020.2.212812.
Mehraeen, E., Karimi, A., Barzegary, A., Vahedi, F., Afsahi, A. M., Dadras, O., Moradmand-Badie, B., Seyed Alinaghi, S. A., & Jahanfar, S. (2020). Predictors of mortality in patients with COVID-19 – a systematic review. European journal of integrative medicine, 40, 101226. https://doi.org/10.1016/j.eujim.2020.101226.
Giustino, G., Croft, L. B., Stefanini, G. G., Bragato, R., Silbiger, J. J., Vicenzi, M., Danilov, T., Kukar, N., Shaban, N., Kini, A., Camaj, A., Bienstock, S. W., Rashed, E. R., Rahman, K., Oates, C. P., Buckley, S., Elbaum, L. S., Arkonac, D., Fiter, R., Singh, R., … Goldman, M. E. (2020). Characterization of Myocardial Injury in Patients With COVID-19. Journal of the American College of Cardiology, 76(18), 2043-2055. https://doi.org/10.1016/j.jacc.2020.08.069.
Kang, Y., Chen, T., Mui, D., Ferrari, V., Jagasia, D., Scherrer-Crosbie, M., Chen, Y., & Han, Y. (2020). Cardiovascular manifestations and treatment considerations in COVID-19. Heart (British Cardiac Society), 106(15), 1132-1141. https://doi.org/10.1136/heartjnl-2020-317056.
Soewono, K. Y., Raney, K. C., 3rd, & Sidhu, M. S. (2021). Pericarditis with pericardial effusion as a delayed complication of COVID-19. Proceedings (Baylor University. Medical Center), 34(5), 629-630. https://doi.org/10.1080/08998280.2021.1918975.
Deana, C., Vetrugno, L., Fabris, M., Curcio, F., Sozio, E., Tascini, C., & Bassi, F. (2022). Pericardial Cytokine «Storm» in a COVID-19 Patient: the Confirmation of a Hypothesis. Inflammation, 45(1), 1-5. https://doi.org/10.1007/s10753-021-01563-3.
Hryzhak, I., Pryshliak, O., Kobryn, T., Fedorov, S., Boichuk, O., Marynchak, O., Kvasniuk, V., Protsyk, A., Miziuk, R., Kucher, A., Simchych, M., Hryzhak, L., & Kuravkin, M. (2023). Clinical and echocardiographic findings in patients with COVID-19 across different severity levels. Journal of medicine and life, 16(11), 1692-1700. https://doi.org/10.25122/jml-2023-0206.
Asakura, H., & Ogawa, H. (2021). COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol, 113(1):45-57. https://doi.org/10.1007/s12185-020-03029-y.
Abraham, G. R., Kuc, R. E., Althage, M., Greasley, P. J., Ambery, P., Maguire, J. J., Wilkinson, I. B., Hoole, S. P., Cheriyan, J., & Davenport, A. P. (2022). Endothelin-1 is increased in the plasma of patients hospitalised with Covid-19. Journal of molecular and cellular cardiology, 167, 92-96. https://doi.org/10.1016/j.yjmcc.2022.03.007.
Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Lindmark, K., & Fors Connolly, A. M. (2021). Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet (London, England), 398(10300), 599-607. https://doi.org/10.1016/S0140-6736(21)00896-5.
Tudoran, C., Tudoran, M., Lazureanu, V. E., Marinescu, A. R., Pop, G. N., Pescariu, A. S., Enache, A., & Cut, T. G. (2021). Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. Journal of clinical medicine, 10(2), 199. https://doi.org/10.3390/jcm10020199.
Tudoran, C., Tudoran, M., Lazureanu, V. E., Marinescu, A. R., Cut, T. G., Oancea, C., Pescariu, S. A., & Pop, G. N. (2021). Factors Influencing the Evolution of Pulmonary Hypertension in Previously Healthy Subjects Recovering from a SARS-CoV-2 Infection. Journal of clinical medicine, 10(22), 5272. https://doi.org/10.3390/jcm10225272.
Racicot, K., & Mor, G. (2017). Risks associated with viral infections during pregnancy. The Journal of clinical investigation, 127(5), 1591-1599. https://doi.org/10.1172/JCI87490.
Liu, H., Wang, L. L., Zhao, S. J., Kwak-Kim, J., Mor, G., & Liao, A. H. (2020). Why are pregnant women susceptible to COVID-19? An immunological viewpoint. Journal of reproductive immunology, 139, 103122. https://doi.org/10.1016/j.jri.2020.103122.
Madjunkov, M., Dviri, M., & Librach, C. (2020). A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. Journal of ovarian research, 13(1), 140. https://doi.org/10.1186/s13048-020-00737-1.
Ischenko, G.I. (2021). COVID-19 during pregnancy. Analytical inspection. Ukrainian Journal of Perinatology and Pediatrics, 1(85), 74-80. https://doi.org/10.15574/PP.2021.85.74.
Pryshliak, O. Y., Marynchak, O. V., Kondryn, O. Y., Hryzhak, I. H., Henyk, N. I., Makarchuk, O. M., Golovchak, I. S., Boichuk, O. P., Protsyk, A. L., & Prokofiev, M. V. (2023). Clinical and laboratory characteristics of COVID-19 in pregnant women. Journal of medicine and life, 16(5), 766-772. https://doi.org/10.25122/jml-2023-0044.
Toori, K. U., Qureshi, M. A., Chaudhry, A., & Safdar, M. F. (2021). Neutrophil to lymphocyte ratio (NLR) in COVID-19: A cheap prognostic marker in a resource constraint setting. Pakistan journal of medical sciences, 37(5), 1435-1439. https://doi.org/10.12669/pjms.37.5.4194.
Norouzi, M., Norouzi, S., Ruggiero, A., Khan, M. S., Myers, S., Kavanagh, K., & Vemuri, R. (2021). Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms, 9(6), 1211.
https://doi.org/10.3390/microorganisms9061211.
Tylishchak, Z., Pryshliak, O., Skrypnyk, N., Boichuk, O., Protsyk, A., Marynchak, O., Sheremet, M., Lazaruk, O., Bezruk, V., & Olinik, O. (2023). Coronavirus disease (COVID-19) in patients with type 2 diabetes mellitus: clinical and laboratory peculiarities. Rom J Diabetes Nutr Metab Dis, 30(1), 9-15. https://doi.org/10.46389/rjd-2023-1224.
Gallo, G., Volpe, M., & Savoia, C. (2022). Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Frontiers in Medicine, 8, 798958. https://doi.org/10.3389/fmed.2021.798958.
Xu, Sw., Ilyas, I., & Weng, J. P. (2023). Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin, 44, 695-709.
https://doi.org/10.1038/s41401-022-00998-0.
Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Lindmark, K., & Fors Connolly, A. M. (2021). Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet (London, England), 398(10300), 599-607. https://doi.org/10.1016/S0140-6736(21)00896-5.
Li, G., Hu, R., & Gu, X. (2020). A close-up on COVID-19 and cardiovascular diseases. Nutrition, metabolism, and cardiovascular diseases: NMCD, 30(7), 1057-1060. https://doi.org/10.1016/j.numecd.2020.04.001.
Tylishchak, Z. R. (2023). Features of endothelial dysfunction and capillary blood flow in patients with coronavirus disease (COVID-19) and concomitant type 2 diabetes. Bukovynsʹkyy medychnyy visnyk – Bukovyna Medical Herald, 27, 1(105), 37-41. https://doi.org/10.24061/2413-0737.27.1.105.2023.7 [in Ukrainian].
Zupanets, I. A., Golubovska, O. A., Shkurba, A. V., Shebeko S. K., Shalamai A. S. (2020). Prospects for studying the use of quercetin preparations in the treatment of COVID-19. Ukrayinsʹkyy medychnyy chasopys – Ukrainian medical journal, 2 (136), 75-78. https://doi.org/10.32471/umj.1680-3051.136.177136 [in Ukrainian].
Prokosa, M. I. (2022). The role of endothelioprotection in the treatment of patients with arterial hypertension: the effectiveness of quercetin. Bukovynsʹkyy medychnyy visnyk – Bukovyna Medical Herald, 26, 3(103), 61-67. https://doi.org/10.24061/2413-0737.XXVІ.3.103.2022.10 [in Ukrainian].
Fiorentino, G., Coppola, A., Izzo, R., Annunziata, A., Bernardo, M., Lombardi, A., Trimarco, V., Santulli, G., & Trimarco, B. (2021). Effects of adding L-arginine orally to standard therapy in patients with COVID-19: A randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine, 40, 101125. https://doi.org/10.1016/j.eclinm.2021.101125.
Gambardella, J., Khondkar, W., Morelli, M. B., Wang, X., Santulli, G., & Trimarco, V. (2020). Arginine and Endothelial Function. Biomedicines, 8(8), 277. https://doi.org/10.3390/biomedicines8080277.
Dubey, H., Dubey, A., Gulati, K., & Ray, A. (2022). Protective effects of L-arginine on cognitive deficits and biochemical parameters in an experimental model of type-2 diabetes mellitus induced Alzheimer’s disease in rats. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 73(1),
https://doi.org/10.26402/jpp.2022.1.01.
Yousefi Rad, E., Nazarian, B., Saboori, S., Falahi, E., & Hekmatdoost, A. (2020). Effects of L-arginine supplementation on glycemic profile: Evidence from a systematic review and meta-analysis of clinical trials. Journal of integrative medicine, 18(4), 284-291.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 О. Я. Пришляк, І. Г. Грижак, З. Р. Тиліщак, Т. З. Кобрин
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0