COVID-19 IN PATIENTS AT RISK OF SEVERE AND COMPLICATED COURSE

Authors

DOI:

https://doi.org/10.11603/1681-2727.2024.4.15004

Keywords:

respiratory infections, risk factors, diabetes mellitus, pregnancy, endothelial dysfunction, heart failure

Abstract

The problems of the course of infectious diseases against the background of concomitant pathology have been of interest to scientists and clinicians for many years. The staff of the Department of Infectious Diseases of Ivano-Frankivsk National Medical University studies both the influence of comorbid conditions on the course of the infectious process and the influence of infectious disease on the state of comorbid pathology. The founder of this idea was Doctor of Medical Sciences, Professor, Head of the Department of Infectious Diseases and Epidemiology from 1991 to 2013 Bohdan Mykolayovych Dykyi.

For many years, significant clinical, laboratory, pathogenetic and therapeutic aspects of the course of viral hepatitis, intestinal infections, leptospirosis, HIV infection, some respiratory infections, parasitosis against the background of concomitant diseases have been studied and the risks that lead to a severe (or complicated) course of both an infectious disease and destabilization of comorbid pathology have been proven.

The emergence of a new strain of coronavirus SARS-CoV-2 in 2019 was a challenge for all of humanity. Although the coronavirus disease COVID-19 has now moved into the category of seasonal respiratory diseases, it nevertheless retains significant potential to cause severe (or complicated) forms of the course, and sometimes with a fatal outcome.

In our comprehensive study, we studied the course of coronavirus disease in patients with underlying diabetes mellitus and chronic cardiovascular pathologies. We also studied some pathogenetic aspects of the course of COVID-19 in pregnant women. During the work, significant pathogenetic mechanisms of the complicated course of the disease were established: in type 2 diabetes mellitus, one of the important links of pathogenetic disorders is endothelial dysfunction and changes in the microvascular bed; factors such as chronic heart failure, reduced ejection fraction, myocardial dysfunction of various types, and pulmonary hypertension have an unfavorable prognostic value. Regarding the course of COVID-19 in pregnant women, despite increased D-dimer levels, pregnancy is not an independent risk factor for severe disease (with the exception of obesity, existing diabetes mellitus, chronic cardiovascular and other concomitant pathology in a pregnant woman).

The publication includes the results of the study, which are fragments of the comprehensive work of the Department of Infectious Diseases and Epidemiology of the Ivano-Frankivsk National Medical University “Course of Infectious Diseases Against the Background of Comorbidity, Combined Chronic Infections and Invasions, Treatment Correction”, with state funding, state registration number: 0119U100571, implementation dates: 2021-2023.

Author Biographies

O. Ya. Pryshlyak, Ivano-Frankivsk National Medical University

Professor, MD, Department of Infectious Diseases and Epidemiology, Head of the Department

 

I. H. Hryzhak, Ivano-Frankivsk National Medical University

Professor, MD, Department of Infectious Diseases and Epidemiology, Professor of the Department

 

Z. R. Tylishchak, Ivano-Frankivsk National Medical University

Department of Infectious Diseases and Epidemiology, Assistant Professor of the Department

 

T. Z. Kobryn, Ivano-Frankivsk National Medical University

Associate Professor, PhD, Department of Infectious Diseases and Epidemiology, Associate Professor of the Department

 

References

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html (Accessed 06.11.24).

People with Certain Medical Conditions and COVID-19. Risk Factors. CDC. June 24, 2024. https://www.cdc.gov/covid/risk-factors/index.html (Accessed 06.11.24).

Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., Li, Q., Jiang, C., Zhou, Y., Liu, S., Ye, C., Zhang, P., Xing, Y., Guo, H., & Tang, W. (2020). Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. The Journal of infection, 81(2), e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021. DOI: https://doi.org/10.1016/j.jinf.2020.04.021

Dallavalasa, S., Tulimilli, S.V., Prakash, J., Ramachandra, R., Madhunapantula, S.V., & Veeranna, R.P. (2023). COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens, 12(2), 184. https://doi.org/10.3390/pathogens12020184. DOI: https://doi.org/10.3390/pathogens12020184

Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., & Yu, T. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 8, 475-481. https://doi.org/10.1016/S2213-2600(20)30079-5. DOI: https://doi.org/10.1016/S2213-2600(20)30079-5

Jin, Y., Ji, W., Yang, H., Chen, S., Zhang, W., & Duan, G. (2020). Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal transduction and targeted therapy, 5(1), 293. https://doi.org/10.1038/s41392-020-00454-7.

Iba, T., Levy, J. H., Connors, J. M., Warkentin, T. E., Thachil, J., & Levi, M. (2020). The unique characteristics of COVID-19 coagulopathy. Critical care (London, England), 24(1), 360. https://doi.org/10.1186/s13054-020-03077-0. DOI: https://doi.org/10.1186/s13054-020-03077-0

Jin, Y., Ji, W., Yang, H., Chen, S., Zhang, W., & Duan, G. (2020). Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal transduction and targeted therapy, 5(1), 293. https://doi.org/10.1038/s41392-020-00454-7. DOI: https://doi.org/10.1038/s41392-020-00454-7

Levy, J. H., Iba, T., & Gardiner, E. E. (2021). Endothelial Injury in COVID-19 and Acute Infections: Putting the Pieces of the Puzzle Together. Arteriosclerosis, thrombosis, and vascular biology, 41(5), 1774-1776. https://doi.org/10.1161/ATVBAHA.121.316101. DOI: https://doi.org/10.1161/ATVBAHA.121.316101

Elbadawi, A., Elgendy, I.Y., Sahai, A., Bhandari, R., McCarthy, M., Gomes, M., Bishop, G.J., Bartholomew, J.R., Kapadia, S., & Cameron, S.J. (2021). Incidence and outcomes of thrombotic events in symptomatic patients with COVID-19. Arterioscler Thromb Vasc Biol., 41, 545-547. https://doi.org/10.1161/ATVBAHA.120.315304. DOI: https://doi.org/10.1161/ATVBAHA.120.315304

Peacock, T. P., Goldhill, D. H., Zhou, J., Baillon, L., Frise, R., Swann, O. C., Kugathasan, R., Penn, R., Brown, J. C., Sanchez-David, R. Y., Braga, L., Williamson, M. K., Hassard, J. A., Staller, E., Hanley, B., Osborn, M., Giacca, M., Davidson, A. D., Matthews, D. A., & Barclay, W. S. (2021). The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature microbiology, 6(7), 899-909. https://doi.org/10.1038/s41564-021-00908-w. DOI: https://doi.org/10.1038/s41564-021-00908-w

Briukhanova, T. O., Zagayko, A. L., & Lytkin, D. V. (2020). Pathophysiological mechanisms of coronavirus disease (COVID-19) progression and fatal complications in patients with diabetes. Pathologia, (2). https://doi.org/10.14739/2310-1237.2020.2.212812. DOI: https://doi.org/10.14739/2310-1237.2020.2.212812

Mehraeen, E., Karimi, A., Barzegary, A., Vahedi, F., Afsahi, A. M., Dadras, O., Moradmand-Badie, B., Seyed Alinaghi, S. A., & Jahanfar, S. (2020). Predictors of mortality in patients with COVID-19 – a systematic review. European journal of integrative medicine, 40, 101226. https://doi.org/10.1016/j.eujim.2020.101226. DOI: https://doi.org/10.1016/j.eujim.2020.101226

Giustino, G., Croft, L. B., Stefanini, G. G., Bragato, R., Silbiger, J. J., Vicenzi, M., Danilov, T., Kukar, N., Shaban, N., Kini, A., Camaj, A., Bienstock, S. W., Rashed, E. R., Rahman, K., Oates, C. P., Buckley, S., Elbaum, L. S., Arkonac, D., Fiter, R., Singh, R., … Goldman, M. E. (2020). Characterization of Myocardial Injury in Patients With COVID-19. Journal of the American College of Cardiology, 76(18), 2043-2055. https://doi.org/10.1016/j.jacc.2020.08.069. DOI: https://doi.org/10.1016/j.jacc.2020.08.069

Kang, Y., Chen, T., Mui, D., Ferrari, V., Jagasia, D., Scherrer-Crosbie, M., Chen, Y., & Han, Y. (2020). Cardiovascular manifestations and treatment considerations in COVID-19. Heart (British Cardiac Society), 106(15), 1132-1141. https://doi.org/10.1136/heartjnl-2020-317056. DOI: https://doi.org/10.1136/heartjnl-2020-317056

Soewono, K. Y., Raney, K. C., 3rd, & Sidhu, M. S. (2021). Pericarditis with pericardial effusion as a delayed complication of COVID-19. Proceedings (Baylor University. Medical Center), 34(5), 629-630. https://doi.org/10.1080/08998280.2021.1918975. DOI: https://doi.org/10.1080/08998280.2021.1918975

Deana, C., Vetrugno, L., Fabris, M., Curcio, F., Sozio, E., Tascini, C., & Bassi, F. (2022). Pericardial Cytokine «Storm» in a COVID-19 Patient: the Confirmation of a Hypothesis. Inflammation, 45(1), 1-5. https://doi.org/10.1007/s10753-021-01563-3. DOI: https://doi.org/10.1007/s10753-021-01563-3

Hryzhak, I., Pryshliak, O., Kobryn, T., Fedorov, S., Boichuk, O., Marynchak, O., Kvasniuk, V., Protsyk, A., Miziuk, R., Kucher, A., Simchych, M., Hryzhak, L., & Kuravkin, M. (2023). Clinical and echocardiographic findings in patients with COVID-19 across different severity levels. Journal of medicine and life, 16(11), 1692-1700. https://doi.org/10.25122/jml-2023-0206. DOI: https://doi.org/10.25122/jml-2023-0206

Asakura, H., & Ogawa, H. (2021). COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol, 113(1):45-57. https://doi.org/10.1007/s12185-020-03029-y. DOI: https://doi.org/10.1007/s12185-020-03029-y

Abraham, G. R., Kuc, R. E., Althage, M., Greasley, P. J., Ambery, P., Maguire, J. J., Wilkinson, I. B., Hoole, S. P., Cheriyan, J., & Davenport, A. P. (2022). Endothelin-1 is increased in the plasma of patients hospitalised with Covid-19. Journal of molecular and cellular cardiology, 167, 92-96. https://doi.org/10.1016/j.yjmcc.2022.03.007. DOI: https://doi.org/10.1016/j.yjmcc.2022.03.007

Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Lindmark, K., & Fors Connolly, A. M. (2021). Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet (London, England), 398(10300), 599-607. https://doi.org/10.1016/S0140-6736(21)00896-5.

Tudoran, C., Tudoran, M., Lazureanu, V. E., Marinescu, A. R., Pop, G. N., Pescariu, A. S., Enache, A., & Cut, T. G. (2021). Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. Journal of clinical medicine, 10(2), 199. https://doi.org/10.3390/jcm10020199. DOI: https://doi.org/10.3390/jcm10020199

Tudoran, C., Tudoran, M., Lazureanu, V. E., Marinescu, A. R., Cut, T. G., Oancea, C., Pescariu, S. A., & Pop, G. N. (2021). Factors Influencing the Evolution of Pulmonary Hypertension in Previously Healthy Subjects Recovering from a SARS-CoV-2 Infection. Journal of clinical medicine, 10(22), 5272. https://doi.org/10.3390/jcm10225272. DOI: https://doi.org/10.3390/jcm10225272

Racicot, K., & Mor, G. (2017). Risks associated with viral infections during pregnancy. The Journal of clinical investigation, 127(5), 1591-1599. https://doi.org/10.1172/JCI87490. DOI: https://doi.org/10.1172/JCI87490

Liu, H., Wang, L. L., Zhao, S. J., Kwak-Kim, J., Mor, G., & Liao, A. H. (2020). Why are pregnant women susceptible to COVID-19? An immunological viewpoint. Journal of reproductive immunology, 139, 103122. https://doi.org/10.1016/j.jri.2020.103122. DOI: https://doi.org/10.1016/j.jri.2020.103122

Madjunkov, M., Dviri, M., & Librach, C. (2020). A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. Journal of ovarian research, 13(1), 140. https://doi.org/10.1186/s13048-020-00737-1. DOI: https://doi.org/10.1186/s13048-020-00737-1

Ischenko, G.I. (2021). COVID-19 during pregnancy. Analytical inspection. Ukrainian Journal of Perinatology and Pediatrics, 1(85), 74-80. https://doi.org/10.15574/PP.2021.85.74. DOI: https://doi.org/10.15574/PP.2021.85.74

Pryshliak, O. Y., Marynchak, O. V., Kondryn, O. Y., Hryzhak, I. H., Henyk, N. I., Makarchuk, O. M., Golovchak, I. S., Boichuk, O. P., Protsyk, A. L., & Prokofiev, M. V. (2023). Clinical and laboratory characteristics of COVID-19 in pregnant women. Journal of medicine and life, 16(5), 766-772. https://doi.org/10.25122/jml-2023-0044. DOI: https://doi.org/10.25122/jml-2023-0044

Toori, K. U., Qureshi, M. A., Chaudhry, A., & Safdar, M. F. (2021). Neutrophil to lymphocyte ratio (NLR) in COVID-19: A cheap prognostic marker in a resource constraint setting. Pakistan journal of medical sciences, 37(5), 1435-1439. https://doi.org/10.12669/pjms.37.5.4194. DOI: https://doi.org/10.12669/pjms.37.5.4194

Norouzi, M., Norouzi, S., Ruggiero, A., Khan, M. S., Myers, S., Kavanagh, K., & Vemuri, R. (2021). Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms, 9(6), 1211.

https://doi.org/10.3390/microorganisms9061211. DOI: https://doi.org/10.3390/microorganisms9061211

Tylishchak, Z., Pryshliak, O., Skrypnyk, N., Boichuk, O., Protsyk, A., Marynchak, O., Sheremet, M., Lazaruk, O., Bezruk, V., & Olinik, O. (2023). Coronavirus disease (COVID-19) in patients with type 2 diabetes mellitus: clinical and laboratory peculiarities. Rom J Diabetes Nutr Metab Dis, 30(1), 9-15. https://doi.org/10.46389/rjd-2023-1224.

Gallo, G., Volpe, M., & Savoia, C. (2022). Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Frontiers in Medicine, 8, 798958. https://doi.org/10.3389/fmed.2021.798958. DOI: https://doi.org/10.3389/fmed.2021.798958

Xu, Sw., Ilyas, I., & Weng, J. P. (2023). Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin, 44, 695-709.

https://doi.org/10.1038/s41401-022-00998-0. DOI: https://doi.org/10.1038/s41401-022-00998-0

Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Lindmark, K., & Fors Connolly, A. M. (2021). Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet (London, England), 398(10300), 599-607. https://doi.org/10.1016/S0140-6736(21)00896-5. DOI: https://doi.org/10.1016/S0140-6736(21)00896-5

Li, G., Hu, R., & Gu, X. (2020). A close-up on COVID-19 and cardiovascular diseases. Nutrition, metabolism, and cardiovascular diseases: NMCD, 30(7), 1057-1060. https://doi.org/10.1016/j.numecd.2020.04.001. DOI: https://doi.org/10.1016/j.numecd.2020.04.001

Tylishchak, Z. R. (2023). Features of endothelial dysfunction and capillary blood flow in patients with coronavirus disease (COVID-19) and concomitant type 2 diabetes. Bukovynsʹkyy medychnyy visnyk – Bukovyna Medical Herald, 27, 1(105), 37-41. https://doi.org/10.24061/2413-0737.27.1.105.2023.7 [in Ukrainian]. DOI: https://doi.org/10.24061/2413-0737.27.1.105.2023.7

Zupanets, I. A., Golubovska, O. A., Shkurba, A. V., Shebeko S. K., Shalamai A. S. (2020). Prospects for studying the use of quercetin preparations in the treatment of COVID-19. Ukrayinsʹkyy medychnyy chasopys – Ukrainian medical journal, 2 (136), 75-78. https://doi.org/10.32471/umj.1680-3051.136.177136 [in Ukrainian]. DOI: https://doi.org/10.32471/umj.1680-3051.136.177136

Prokosa, M. I. (2022). The role of endothelioprotection in the treatment of patients with arterial hypertension: the effectiveness of quercetin. Bukovynsʹkyy medychnyy visnyk – Bukovyna Medical Herald, 26, 3(103), 61-67. https://doi.org/10.24061/2413-0737.XXVІ.3.103.2022.10 [in Ukrainian]. DOI: https://doi.org/10.24061/2413-0737.XXVI.3.103.2022.10

Fiorentino, G., Coppola, A., Izzo, R., Annunziata, A., Bernardo, M., Lombardi, A., Trimarco, V., Santulli, G., & Trimarco, B. (2021). Effects of adding L-arginine orally to standard therapy in patients with COVID-19: A randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine, 40, 101125. https://doi.org/10.1016/j.eclinm.2021.101125. DOI: https://doi.org/10.1016/j.eclinm.2021.101125

Gambardella, J., Khondkar, W., Morelli, M. B., Wang, X., Santulli, G., & Trimarco, V. (2020). Arginine and Endothelial Function. Biomedicines, 8(8), 277. https://doi.org/10.3390/biomedicines8080277. DOI: https://doi.org/10.3390/biomedicines8080277

Dubey, H., Dubey, A., Gulati, K., & Ray, A. (2022). Protective effects of L-arginine on cognitive deficits and biochemical parameters in an experimental model of type-2 diabetes mellitus induced Alzheimer’s disease in rats. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 73(1),

https://doi.org/10.26402/jpp.2022.1.01.

Yousefi Rad, E., Nazarian, B., Saboori, S., Falahi, E., & Hekmatdoost, A. (2020). Effects of L-arginine supplementation on glycemic profile: Evidence from a systematic review and meta-analysis of clinical trials. Journal of integrative medicine, 18(4), 284-291.

https://doi.org/10.1016/j.joim.2020.05.001. DOI: https://doi.org/10.1016/j.joim.2020.05.001

Published

2024-12-17

How to Cite

Pryshlyak, O. Y., Hryzhak, I. H., Tylishchak, Z. R., & Kobryn, T. Z. (2024). COVID-19 IN PATIENTS AT RISK OF SEVERE AND COMPLICATED COURSE. Infectious Diseases – Infektsiyni Khvoroby, (4), 4–13. https://doi.org/10.11603/1681-2727.2024.4.15004

Issue

Section

Editorial