TREATMENT OF PEOPLE WITH COVID-19 WITHIN THE USAGE OF GENETICALLY ENGINEERED MEANS

Authors

DOI:

https://doi.org/10.11603/1681-2727.2022.2.13193

Keywords:

COVID-19, monoclonal antibodies, mesenchymal stem cells

Abstract

SUMMARY. One of the most relevant topics today is a viral infection caused by the coronavirus SARS-CoV-2, which has acquired not only medical but also social significance. The World Health Organization declared COVID-19 pandemic on March 11, 2020. Modern therapeutic options for the treatment of COVID-19 combine using drugs that affect both the virus and the components of the body's immune response. Despite the fact that pathogenetic mechanisms of infectious diseases have been partially studied, the treatment still does not live up to expectations, mainly due to the development of adverse drug reactions and conflicting treatment outcomes. Currently, the number of experimental genetically engineered molecules, proposed for the treatment of SARS-CoV-2, are growing steadily, which necessitates the analysis of modern scientific sources on the prospects, advantages and disadvantages of virus-neutralizing monoclonal antibodies, natural killers, mesenchymal stem cells and monoclonal antibodies to interleukin-6.

Author Biographies

V.D. Moskaliuk, Bukovynian State Medical University

MD, Professor, Head at the Department of Infectious Diseases and Epidemiology, Bukovynian State Medical University

B.V. Syrota, Bukovynian State Medical University

Assistant at the Department of Infectious Diseases and Epidemiology, Bukovynian State Medical University

References

Kokudo, N., & Sugiyama, H. (2020). Call for international cooperation and collaboration to effectively tackle the COVID-19 pandemic. Global Health & Medicine, 2(2), 60-62..

Saba, S., Maryam, K., Zelal, J. K. (2020). Potential strategies for combating COVID-19. Arch Virol., 165(11): 2419–2438. doi: 10.1007/s00705-020-04768-3.

Valdez-Cruz, N. A., García-Hernández, E., Espitia, C., Cobos-Marín, L., Altamirano, C., Bando-Campos, C. G., ... & Trujillo-Roldán, M. A. (2021). Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial cell factories, 20(1), 1-32. doi: 10.1186/s12934-021-01576-5.

Wang, C., Li, W., Drabek, D., Okba, N., van Haperen, R., Osterhaus, A. D., ... & Bosch, B. J. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature communications, 11(1), 1-6. doi: 10.1038/s41467-020-16256-y.

Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., ... & Corti, D. (2020). Structural and functional analysis of a potent sarbecovirus neutralizing antibody. BioRxiv. doi: 10.1101/2020.04.07.023903.

Wrapp, D., De Vlieger, D., Corbett, K. S., Torres, G. M., Wang, N., Van Breedam, W., ... & McLellan, J. S. (2020). Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell, 181(5), 1004-1015.

Wec, A. Z., Wrapp, D., Herbert, A. S., Maurer, D. P., Haslwanter, D., Sakharkar, M., ... & Walker, L. M. (2020). Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 369(6504), 731-736.

Du, S., Cao, Y., Zhu, Q., Yu, P., Qi, F., Wang, G., ... & Qin, C. (2020). Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell, 183(4), 1013-1023. doi: 10.1016/j.cell.2020.09.035

Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., ... & Kyratsous, C. A. (2020). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 370(6520), 1110-1115.

Weinreich, D. M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., & Bhore, R. (2021). REGN-COV2, un cóctel de anticuerpos neutralizantes, en pacientes ambulatorios con Covid-19. N Engl J Med, 384(3), 238-251.

Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., ... & Kyratsous, C. A. (2020). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 370(6520), 1110-1115.

Du, S., Cao, Y., Zhu, Q., Yu, P., Qi, F., Wang, G., ... & Qin, C. (2020). Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell, 183(4), 1013-1023. doi: 10.1016/j.cell.2020.09.035

Coomes, E. A., & Haghbayan, H. (2020). Interleukin-6 in COVID-19: a systematic review and meta-analysis. Reviews in medical virology, 30(6), 1-9. doi: 10.1002/rmv.2141.

Weinreich, D. M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., ... & Yancopoulos, G. D. (2021). REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. New England Journal of Medicine, 384(3), 238-251. doi: 10.1056/NEJMoa2035002.

Flude, B. M., Nannetti, G., Mitchell, P., Compton, N., Richards, C., Heurich, M., ... & Bassetto, M. (2021). Targeting the complement serine protease MASP-2 as a therapeutic strategy for coronavirus infections. Viruses, 13(2), 312.

Zhu, J., Pang, J., Ji, P., Zhong, Z., Li, H., Li, B., & Zhang, J. (2020). Elevated interleukin-6 is associated with severity of COVID-19: a meta-analysis. Journal of medical virology. doi: 10.1002/jmv.26085

Lescure, F. X., Honda, H., Fowler, R. A., Lazar, J. S., Shi, G., Wung, P., ... & Boell, B. (2021). Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine, 9(5), 522-532.

Li, H., Liu, S. M., Yu, X. H., Tang, S. L., & Tang, C. K. (2020). Coronavirus disease 2019 (COVID-19): current status and future perspectives. International journal of antimicrobial agents, 55(5), 105951. doi: 10.1016/j.ijantimicag.

Golchin, A., Seyedjafari, E., & Ardeshirylajimi, A. (2020). Mesenchymal stem cell therapy for COVID-19: present or future. Stem cell reviews and reports, 16(3), 427-433.

Bari, E., Ferrarotti, I., Saracino, L., Perteghella, S., Torre, M. L., & Corsico, A. G. (2020). Mesenchymal stromal cell secretome for severe COVID-19 infections: premises for the therapeutic use. Cells, 9(4), 924.

Zhao, R. C. (2020). Stem cell–based therapy for coronavirus disease 2019. Stem Cells and Development, 29(11), 679-681. doi: 10.1089/scd.2020.0071.

Gediz Erturk, A., Sahin, A., Bati Ay, E., Pelit, E., Bagdatli, E., Kulu, I., ... & Yildirim, T. (2021). A multidisciplinary approach to Coronavirus disease (COVID-19). Molecules, 26(12), 3526. doi:10.3390/molecules26123526

Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12(2), 135. doi: 10.3390/v12020135.

Peng, X. L., Cheng, J. S. Y., Gong, H. L., Yuan, M. D., Zhao, X. H., Li, Z., & Wei, D. X. (2021). Advances in the design and development of SARS-CoV-2 vaccines. Military Medical Research, 8(1), 1-31. doi:10.1186/s40779-021-00360-1

Owji, H., Negahdaripour, M., & Hajighahramani, N. (2020). Immunotherapeutic approaches to curtail COVID-19. International immunopharmacology, 88, 106924. doi: 10.1016/j.intimp.

Published

2022-09-27

How to Cite

Moskaliuk, V., & Syrota, B. (2022). TREATMENT OF PEOPLE WITH COVID-19 WITHIN THE USAGE OF GENETICALLY ENGINEERED MEANS. Infectious Diseases – Infektsiyni Khvoroby, (2), 82–87. https://doi.org/10.11603/1681-2727.2022.2.13193

Issue

Section

Reviews and lectures