NEUROIMMUNOLOGICAL CHANGES IN EARLY DIAGNOSTICS OF HIV INFECTION
DOI:
https://doi.org/10.11603/1681-2727.2021.3.12497Keywords:
diagnosis, neuroAIDS, neurospecific proteinsAbstract
The aim of the study – analysis of the influence of neurospecific proteins on the development of neuroAIDS, their role in the pathogenesis, determining the prospects of involvement in the early diagnosis of HIV infection.
The study used theoretical methods that included analysis and synthesis of the study of modern world research, clinical observations, deductive-inductive methods.
Conclusions. There is an active spread and late detection of HIV infection in Ukraine. Standard methods of laboratory diagnosis are unable to provide quality early diagnosis of HIV infection.
The rapid penetration of the virus into the CNS creates difficulties for differential diagnosis with the subsequent formation of resistance to ART. As long as HIV in the blood remains in a long latent period, the pathogen is actively functioning in brain cells.
The connections and features of accumulation of matrix HIV-protein p-17 in the CNS, activity of transcriptional transactivator, regulatory protein Vpr remain poorly studied. Neurospecific proteins as markers of viral pathological process in the human nervous system need special attention and study.
Review of the basics of early diagnosis of HIV will provide opportunities to strengthen epidemiological control and prevent new cases of the disease, which will ultimately lead to a reduction in government funding of this problem not only in Ukraine but also in many countries.
References
Chemych, M.D., Sosnovenko, D.S., Chemych, O.M., Berest, O.B. (2020). Hematological changes of endogenic intoxication, non-specific reactivity and inflammation activity indices in hiv-infected patients. Wiadomosci Lekarskie, 73 (5), 983-987. DOI: 10.36740/WLek202005127
Chernii, T.V. (2020). The role of cholinergic insufficiency in cognitive impairment among patients with chronic cerebral ischemia. Wiadomosci Lekarskie, 73 (5), 857-863. Retrieved from: www.scopus.com
Vasylyeva, T.I., Liulchuk, M., Du Plessis, L., Fearnhill, E., Zadorozhna, V., Babii, N., Faria, N.R. (2019). The changing epidemiological profile of HIV-1 subtype B epidemic in Ukraine. AIDS Research and Human Retroviruses, 35 (2), 155-163. DOI:10.1089/aid.2018.0167
World Health Organization: website. URL: https://www.who.int/ru/news-room/fact-sheets/detail/hiv-aids (Last accessed: 12.01.2021).
Kaur, N., Dendukuri, N., Fellows, L.K., Brouillette, M., & Mayo, N. (2020). Association between cognitive reserve and cognitive performance in people with HIV: A systematic review and meta-analysis. AIDS Care – Psychological and Socio-Medical Aspects of AIDS/HIV, 32 (1), 1-11. DOI:10.1080/09540121.2019.1612017
Heithoff, A.J., Totusek, S.A., Le, D., Barwick, L., Gensler, G., Franklin, D.R., & Fox, H.S. (2019). The integrated national NeuroAIDS tissue consortium database: A rich platform for neuroHIV research. Database, 2019 DOI:10.1093/database/bay134
State institution “Public Health Center of the Ministry of Health of Ukraine”, 2020: website. Retrieved from: https://phc.org.ua/kontrol-zakhvoryuvan/vilsnid/statistika-z-vilsnidu (Last accessed: 12.01.2021).
Kuzin, I., & Martzynovska, V. HIV-infection in Ukraine 2019 State Institution ”Public Health Center of the Ministry of Health of Ukraine”, 50. 6-16.
Thaney, V.E., & Kaul, M. (2019). Type i interferons in NeuroHIV. Viral Immunology, 32 (1), 7-14. DOI:10.1089/vim.2018.0085
Priyanka, Wadhwa, R., Chaudhuri, R., Nag, T.C., & Seth, P. (2020). Novel role of mortalin in attenuating HIV-1 tat-mediated astrogliosis. Journal of Neuroinflammation, 17 (1). DOI:10.1186/s12974-020-01912-3
Liu, Y., Niu, Y., Li, L., Timani, K.A., He, V.L., Sanborn, C., He, J.J. (2019). Correction to: Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. NeuroVirology, (2019), 25, 4, (508-519), 10.1007/s13365-019-00751-0). Journal of Neurovirology, 25 (6), 901. doi:10.1007/s13365-019-00766-7
Barat, C., Proust, A., Deshiere, A., Leboeuf, M., Drouin, J., & Tremblay, M. J. (2018). Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia, 66(7), 1363-1381. DOI:10.1002/glia.23310
Chauhan, A. (2015). Enigma of HIV-1 latent infection in astrocytes: An in-vitro study using protein kinase C agonist as a latency reversing agent. Microbes and Infection, 17(9), 651-659. DOI:10.1016/j.micinf.2015.05.006
Fan, Y., & He, J. J. (2016). HIV-1 tat promotes lysosomal exocytosis in astrocytes and contributes to astrocyte-mediated tat neurotoxicity. Journal of Biological Chemistry, 291 (43), 22830-22840. DOI:10.1074/jbc.M116.731836
Gray, L.R., Cowley, D., Crespan, E., Welsh, C., Mackenzie, C., Wesselingh, S.L., Churchill, M.J. (2013). Reduced basal transcriptional activity of central nervous system-derived HIV type 1 long terminal repeats. AIDS Research and Human Retroviruses, 29 (2), 365-370. DOI:10.1089/aid.2012.0138
Reis, dos R.S., Sant, S., Keeney, H., Wagner, M.C.E., & Ayyavoo, V. (2020). Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Scientific Reports, 10 (1). DOI:10.1038/s41598-020-72214-0
Walsh, J.G., Reinke, S.N., Mamik, M.K., McKenzie, B.A., Maingat, F., Branton, W.G., & Power, C. (2014). Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology, 11 (1). DOI:10.1186/1742-4690-11-35
Janssen, R.S., Cornblath, D.R., Epstein, L.G., Foa, RP., McArthur, J.C., & Price, R.W., American Academy of Neurology AIDS Task Force. (1991). Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology, 41 (6), 778-785. DOI:10.1212/wnl.41.6.778
Russell, R.A., Chojnacki, J., Jones, D.M., Johnson, E., Do, T., Eggeling, C., & Sattentau, Q.J. (2017). Astrocytes resist HIV-1 fusion but engulf infected macrophage material. Cell Reports, 18 (6), 1473-1483. DOI:10.1016/j.celrep.2017.01.027
Buyukturkoglu, K., Fleyser, L., Byrd, D., Morgello, S., & Inglese, M. (2018). Diffusion kurtosis imaging shows similar cerebral axonal damage in patients with HIV infection and multiple sclerosis. Journal of Neuroimaging, 28 (3), 320-327. DOI:10.1111/jon.12497
Green, M. V., & Thayer, S. A. (2016). NMDARs adapt to neurotoxic HIV protein tat downstream of a GluN2A–ubiquitin ligase signaling pathway. Journal of Neuroscience, 36 (50), 12640-12649. DOI:10.1523/JNEUROSCI.2980-16.2016
Kukhanova, M.K., Karpenko, I.L., & Ivanov, A.V. (2020). DEAD-box RNA helicase DDX3: Functional properties and development of DDX3 inhibitors as antiviral and anticancer drugs. Molecules, 25 (4) DOI:10.3390/molecules25041015
Saribas, A.S., Coric, P., Hamazaspyan, A., Davis, W., Axman, R., White, M.K., Safak, M. (2016). Emerging from the unknown: Structural and functional features of agnoprotein of polyomaviruses. Journal of Cellular Physiology, 231 (10), 2115-2127. DOI:10.1002/jcp.25329
Zhao, X., Fan, Y., Vann, P.H., Wong, J.M., Sumien, N., & He, J.J. (2020). Long-term HIV-1 tat expression in the brain led to neurobehavioral, pathological, and epigenetic changes reminiscent of accelerated aging. Aging and Disease, 11 (1), 93-107. DOI:10.14336/AD.2019.0323
Zou, S., Balinang, J.M., Paris, J.J., Hauser, K.F., Fuss, B., & Knapp, P.E. (2019). Effects of HIV-1 tat on oligodendrocyte viability are mediated by CaMKIIβ–GSK3β interactions. Journal of Neurochemistry, 149 (1), 98-110. DOI:10.1111/jnc.14668
Levy J.A. HIV and the pathogenesis of AIDS. USA: American Society for Microbiology, 2007. ISBN 978-1-55581-393-2
Jha, N.K., Sharma, A., Jha, S.K., Ojha, S., Chellappan, D.K., Gupta, G. Singh, S.K. (2020). Alzheimer’s disease-like perturbations in HIV-mediated neuronal dysfunctions: Understanding mechanisms and developing therapeutic strategies: HIV and AD relationship. Open Biology, 10 (12) DOI:10.1098/rsob.200286rsob200286
Ojeda-Juárez, D., Shah, R., Fields, J.A., Harahap-Carrillo, I.S., Koury, J., Maung, R., Kaul, M. (2020). Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection. Brain, Behavior, and Immunity, 89, 184-199. DOI:10.1016/j.bbi.2020.06.016
Strebel, H., Haller, B., Sohn, M., Schepp, W., & Gundling, F. (2020). Role of brain biomarkers S-100-beta and neuron-specific enolase for detection and follow-up of hepatic encephalopathy in cirrhosis before, during and after treatment with L-ornithine-L-aspartate. GE Portuguese Journal of Gastroenterology, 27 (6), 391-403. DOI:10.1159/000507225
Galina, G.Yu., Poponnikova, T.V., & Vavin G.V. (2008). Neuron-specific enolase and block NS-100, which are possible markers of nervous system damage in patients with hospitable key neuroinfections. Siberian Medical Journal, 82 (7), 29-31 [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Infectious Diseases
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0