THE MODERN VIEW ON IMMUNOPATHOGENESIS OF HIV-INFECTION AND TUBERCULOSIS

Authors

  • T. R. Kolotylo Bukovinian State Mediсal University

DOI:

https://doi.org/10.11603/1681-2727.2019.2.10327

Keywords:

HIV-infection, tuberculosis, immunopathogenesis

Abstract

The aim of the study – to assess the immunopathogenesis of HIV-infection and tuberculosis (TB) based on recent world research.

The basic immunopathogenetic mechanisms of development and progression of HIV-infection and tuberculosis are presented, as well as ways of strengthening the effect of their combined action are explained. The number and functionality of CD4+ T-lymphocytes is reduced with the progression of HIV-infection. The synthesis of lymphocytes increases and humoral immunity is activated compensatory in the bone marrow. Chronic diseases or infections cause depletion of compensatory mechanisms, resulting in a gradual decrease in the number of lymphocytes, cellular immunity is disturbed even more, and the disturbance of B-lymphocytes function leads to changes of humoral immune response also.

The addition of intercurrent illnesses in HIV-infected patients depends on the state of cellular and humoral immunity, the level of CD4+ T-lymphocytes, the reduction of which to 300 cells/ml of blood is a determining factor in the attachment of secondary pathology.

The growth of the affection of the immune system eventually leads to the development of opportunistic infections. Under these conditions, the immune system can not restrain the persistence of mycobacterium tuberculosis (MBT), which leads to the development of clinical forms of TB. The significant damage and decrease in the number of CD4+ T-lymphocytes in patients with combined HIV/TB infection is accompanied by significant weakening of the activity of alveolar macrophages, enhanced reproduction in the lungs of MBT, which contributes to their dissemination.

Author Biography

T. R. Kolotylo, Bukovinian State Mediсal University

assistant of the Department of Internal Medicine and Infectious Diseases, Bukovinian State Medical University

References

Chaves, F., & Dronda, F. (2009). Influence of a tuberculosis on current of a HIV-infections at patients with the united pathology. AIDS, 13(5), 615-620. DOI: https://doi.org/10.1097/00002030-199904010-00011

Kalinina, N.M., & Ketlinskiy, S.A. (2010). Immunologiya VICH-infektsii. Immunodefitsitnyye sostoyaniya [Immunology of HIV-infection. Immunodeficient states]. Saint-Petresburg «Folio» [in Russian].

Ferbas, J. (2008). Perspectives on the role of CD8+ cell suppressor factors and cytotoxic T limfocytes during HIV infection. AIDS, 14 (2), 153-160.

Shearer, G.M. (2017). Cellular immunity in long-term nonprogressors looking beyond. J. Acquir. Immune Defic. Syndr. Human Retrovirol., 15, 40-42.

Shearer, G.M., & Clerici, M. (2017). Cytokine profiles in HIV type 1 disease and protection. AIDS Res. Human Retrovir., 14 (2), 149-152.

Gandhi, R., Chen, B., Straus, S., Dale, J.K., Lenardo, M.J., & Baltimore, D. (2008). HIV-1 directly kills CD4 T cells by a FAS-independent mechanism. J. Exp. Med., 187 (7), 1113-122.

Babayeva, I.Yu. (2007). Tuberkulez u bolnykh VICH-infektsiyey v novykh epidemiologicheskikh usloviyakh [Tuberculosis for patients with HIV-infection in new epidemiology terms]. Extended abstract of PhD thesis (Medical sciences). Moscow [in Russian].

Sallusto, F., Lenig, D., & Machcy, C.R. (2008). Flexible program of chemokine receptor expression on human polarized T-helper 1 and 2 lymphocytes. J. Exp. Med., 187 (60), 875-883.

No, A.G., & De Vries, N. (2013). An allelic polymorphism within the human TNF promoter region is strongly associated with HLA-Al, B8, DIG alleles. J. Exp. Med., 177 (2), 557-560.

Sawada, S., Gowrispanker, K., & Kitamura, R. (2008). Disturbed CD4 T cell homeostasis and in vitro HIV susceptibility to transgenic mice expressing T cell line-tropic HIV receptors. J. Exp. Med., 187 (9), 439-449.

Deeks, S.G., & Brüse, D.W. (2014). Changes CD8+ cells at the HIV of an infection. J. Clin. Infect. Dis., 113, 808-811.

Jiao, Y., Fu, J., Xing, S., Fu, B., Zhang, Z., Shi, M., … Wang, F.S. (2008). The decrease of regulatory T cells correlates with excessive activation and apoptosis of CD8(+) T cells in HIV-1-infected typical progressors, but not in long-term non-progressors. Immunology, 180, 1098-1100.

Makasheva, Ye.V. (2010). Kliniko-laboratornyye osobennosti techeniya VICH-infektsii, sochetannoy s tuberkulezom [Clinical and laboratory features of HIV-infection flow combined with tuberculosis]. Extended abstract of PhD thesis (Infectious diseases). Saint-Petersburg [in Russian].

Kared, H., Lelievre, J.D., Donkova-Petrini, V., Aouba, A., Melica, G., Balbo, M., Weiss, L., Lévy, Y. (2008). HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection. AIDS, 22, 2451-2460. DOI: https://doi.org/10.1097/QAD.0b013e328319edc0

Jiang, H., & Chess, L. (2014). An integrated view of suppressor T cell subsets in immunoregulation. J. Clin. Invest., 114 (9), 1198-1208.

Chase, A.J., Yang, H.C., Zhang, H., Blankson, J.N., & Siliciano, R.F. (2008). Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors con-elates with low CD4+ T-cell activation. J. Virol., 82, 8307-8315. DOI: https://doi.org/10.1128/JVI.00520-08

Bender, B.S., Bohnasch, J.F., & Sourlis, S.H. (2017). Demonstration of defective C3-receptor-mediated clearance by the reticuloendothelial system patients with AIDS. J. Clin. Invest., 79 (3), 715-720.

Morris, L., Binlay, J.M., & Clas, B.A. (2008). HIV-1 antigen-specific and nonspecific B cell respons are sensitive to combination antiretrovirial therapy. J. Exp. Med., 188 (2), 233-245.

Birx, D.L. (2010). Induction of IL-6 during human immunodeficiency virus infection. Blood, 76 (11), 2799-2809.

Aukrust, P., Liabakk, N-B., Muller, F., Lien, E., Espevik, T., & Froland, S.S. (2014). Serum TNF-, IL-1, p24 antigen concentrations and CD4+ cells and soluble TNF receptors in human immunodeficiency vims type 1 infection – correlation to clinical? Immunologic and virologic parameters. J. Inf. Dis., 169 (2), 420-429.

Goldfried, M., Van Der Poll, T., & Weverling, G. (2014). Soluble receptor for tumor necrosis factor as predictors of progression to AIDS in asymptomatic human immunodeficiency virus type 1 infection. J. Inf. Dis., 169 (4), 739-745.

Whitmire, J., Tan, J., & Whitton, J. (2015). Functions IFN-γ in immune protection against in infections. J. Exp. Med., 201 (7), 1053-1059.

Ravina, A., Maggi, E., & Mazzetti, V. (2014). Ability of HIV to promoute a Thl to Th0 shift and to replicate prefentially in Th2 and Th0 cell. Science, 265 (5169), 244-248.

Sokolov, Yu.V., Kuznya, T.I., & Chumakova, Ye.A. (2008). Analiz tsitokinprodutsiruyushchey produktsii i retseptorekspressiruyushchey sposobnosti limfotsitov pri VICH-infektsii [Analysis of cytocine producting the products and receptor expression ability of lymphocytes at HIV-infection]. Rossiyskiy immunologicheskiy zhurnal – Russian immunological Journal, 2 (11), 270-273 [in Russian].

Gea-Banadoche, J.C., & Weiscopf, E.E. (2008). Progression of HIV-disease in associated with increasing disruption within CD4 Tcell receptor repertoire. J. Inf. Dis., 177 (3), 579-585.

Sadek, M.I., Sada, E., Toossi, Z., Shwander, S.K., & Rich, E.A. (2008). Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am. J. Respir. Cell. Mol. Biol., 19, 513-521. DOI: https://doi.org/10.1165/ajrcmb.19.3.2815

Clerici, M.L., & Shearer, G.M. (2013). Th1 to Th2 swith is a critical step in the ethiology of HIV infection. Immunol. Today, 14 (3), 107-110.

Sakharova, I.Ya., & Ariel, B.M. (2015). Pokazateli immuniteta i biologicheskiye svoystva mikobakteriy pri infiltrativnom tuberkuleze legkikh [Indexes of immunity and biological properties of micobacterium at infiltrative lung tuberculosis]. Problemy tuberkuleza – Problems of Tuberculosis, 6, 14-17 [in Russian].

Rodrigues, D.S., Salomao, R., & Kallas, E.G. (2016). Reduction CD4+ and CD8+ at disseminate tuberculosis accompanying with increase exspression CD38+ on CD8+. Braz. J. Infect. Dis., 10 (1), 59-61.

Tishkevich, O.A., Shakhgildyan, V.I., & Parkhomenko, Yu.G. (2004). Struktura letalnykh iskhodov i patologicheskaya anatomiya u bolnykh VICH-infektsiyey v g. Moskva [Structure of fatal outcomes and pathoanatomy for patients with HIV-infection in Moscow]. Epidemiologiya i infektsionnyye bolezni – Epidemiology and Infectious Diseases, 4, 42-46 [in Russian].

Agarwal, S.K., Singh, A., Anuradha, S., Singh, N.P., Sokhi, J., & Baveja, U.K. (2011). Cytokine profile in human immunodeficiency virus positive patients with and without tuberculosis. J. Assoc. Physicians. India, 49, 799-802.

Mayanja-Kizza, H., Johnson, J.L., Hirsch, C.S., Peters, P., Surewicz, K., Wu, M., … Toossi, Z. (2011). Macrophage-activating cytokines in human immununodeficiency virus type 1-infected and uninfected patients with pulmonary tuberculosis. J. Infect. Dis., 183 (12), 1805-1809.

Dheda, K., Chang, J.S., Breen, R.A., Haddock, J.A., Lipman, M.C., Kim, L.U., … Zumla, A. (2005). Expression of a novel cytokine, IL-4 delta2 in HIV and HIV-tuberculosis co-infection. AIDS, 14 (15), 1601-1606. DOI: https://doi.org/10.1097/01.aids.0000183520.52760.ef

Winkler, S., Necek, M., Winkler, H., Adegnika, A.A., Perkmann, T., Ramharter, M., & Kremsner, P.G. (2015). Increased specific T cell cytokine responses in patients with active pulmonary tuberculosis from Central Africa. Microbes Infect., 7 (9-10), 1161-1169.

Lakhashe, S.K. (2015). Dysregulation of cytokines from HIV+ with TB. J. Cytokines, 5, 275-281.

Published

2019-07-30

How to Cite

Kolotylo, T. R. (2019). THE MODERN VIEW ON IMMUNOPATHOGENESIS OF HIV-INFECTION AND TUBERCULOSIS. Infectious Diseases – Infektsiyni Khvoroby, (2), 58–65. https://doi.org/10.11603/1681-2727.2019.2.10327

Issue

Section

Reviews and lectures