Features Of The Paretic Limb Spasticity And Function Level Correlation After Different Types Of Neurotransplantation On The Model Of Spinal Cord Injury

Authors

  • V. V. Medvediev The National Academy of Medical Sciences of Ukraine, State Institution Institute of Neurosurgery. Acad. AP Romodanov NAMS Ukraine

DOI:

https://doi.org/10.11603/2414-4533.2017.1.7247

Keywords:

spinal cord injury, post-traumatic spasticity syndrome, spinal cord function recovery, tissue neurotransplantation, correlation.

Abstract

The aim of the work – to explore the correlation of spasticity and function level in the paretic limb after different types of neurotransplantation on the model of spinal cord injury.

Materials and Methods. Animals – white inbred rats (males, 5.5 months, ~ 350 g); groups: “control” – the left-side spinal cord hemisection at T11 (n=16), “TOBT” – analogous spinal cord injury + immediate allogenic homotopical transplantation of the olfactory bulb tissue (n=34), “TFCT” – analogous spinal cord injury + immediate allogenic homotopical transplantation of a fetal (E18) cerebellum tissue (n=15); “TFKT” – analogous spinal cord injury + immediate allogenic homotopical transplantation of a fetal (E18) kidney tissue (n=8). Monitoring of the ipsilateral hind limb (IHL) function and spasticity indicator (FI and SI respectively) – Basso-Beattie-Bresnahan (BBB) scale and Ashworth scale, respectively.

Results and Discussion. TOBT provides reliable advantage of IHL FI with a maximum in 3rd week (3.7 ± 0.5 points BBB), followed by a gradual decrease to 2.4±0.6 points BBB (24th week), reduces the severity of spasticity in the early period of trauma. TFCT transforms dynamics of the IHL FI from a progressive to constant with fluctuations within interval 3–3.6 points BBB, significantly improves spasticity during 1st–3rd week, further stabilizes the IHL SI at 1.8–2.1 points Ashworth. TFKT causes a progressive (1st month) and progressive-to-constant (6th–24th week) phase of IHL FI dynamics, significantly improves spasticity during the first two weeks. Correlation between the average (for the group) value of mean value of IHL FI and SI during observation period was absent in group “TFCT”, in group “control” was found weak positive correlation, in group “TFKT” – moderate positive correlation, in group “TOBT” – strong negative correlation. Correlation analysis of individual IHL FI and SI values during observation period and at each time of observation indicates the predominance of negative correlation between them.

Conclusions. Variability of the correlation between IHL FI and SI indicates significant differences in breadth of supraspinal projection coating of IHL motoneurons populations, their survival during experiment after different types of tissue neurotransplantation.

Author Biography

V. V. Medvediev, The National Academy of Medical Sciences of Ukraine, State Institution Institute of Neurosurgery. Acad. AP Romodanov NAMS Ukraine

к.мед.н., доцент, доцент кафедри нейрохірургії Національного медичного університету імені О.О. Богомольця

References

Louie, D.R., Eng, J.J., & Lam, T. SCIRE Research Team (2015). Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J. Neuroeng. Rehabil., 12 (82), 1–10. doi: 10.1186/s12984-015-0074-9.

López-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., Pérez-Nombela, S., del-Ama, A.J., Aranda, J. ...Montesano, L. (2016). Control of an ambulatory exoskeleton with a brain–machine interface for spinal cord injury gait rehabilitation. Front. Neurosci., 10 (359), 1-15. doi: 10.3389/fnins.2016.00359.

Miller, L.E., Zimmermann, A.K., & Herbert, W.G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta analysis. Med. Devices (Auckl)., 9, 455-466. doi: 10.2147/MDER.S103102.

Siebert, J.R, Eade, A.M., & Osterhout, D.J. (2015). Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles. Bio. Med. Res. Int., 2015, 1-20. doi: 10.1155/2015/752572.

Tsintou, M., Dalamagkas, K., & Seifalian, A.M. (2015). Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen. Res., 10(5), 726-742. doi: 10.4103/1673-5374.156966.

Volpato, F.Z., Führmann, T., Migliaresi, C., Hutmacher, D.W., & Dalton P.D. (2013). Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 34(21), 4945-4955. doi: 10.1016/j.biomaterials.2013.03.057.

Leach, J.B., Achyuta, A.K.H., & Murthy, S.K. (2010). Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front. Neuroeng., 2(18), 1-19. doi: 10.3389/neuro.16.018.2009.

Siebert, J.R., Eade, A.M., & Osterhout, D.J. (2015). Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles. BioMed Res. Int., 2015, 1-20. doi: 10.1155/2015/752572.

Tsintou, M., Dalamagkas, K., & Seifalian, A.M. (2015). Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen. Res., 10(5), 726-742. doi: 10.4103/1673-5374.156966.

Volpato, F.Z., Führmann, T., Migliaresi, C., Hutmacher, D.W., & Dalton, P.D. (2013) Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 34(21), 4945-4955. doi: 10.1016/j.biomaterials.2013.03.057.

Wu, J., Sun, T., Ye, C., Yao, J., Zhu, B., & He, H. (2012). Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell. Transplant., 21(1), 33-37. doi: 10.3727/096368912X633743.

van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., ...Marsala, M. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res. Ther., 4(57), 1-22. doi: 10.1186/scrt209.

Nagayama, S., Homma, R., & Imamura, F. (2014). Neuronal organization of olfactory bulb circuits. Front. Neural Circuits, 8(98), 1-19. doi: 10.3389/fncir.2014.00098.

Hoshino, M. (2012). Neuronal subtype specification in the cerebellum and dorsal hindbrain. Dev. Growth Differ., 54(3), 317-326. doi: 10.1111/j.1440-169X.2012.01330.x.

Marzban, H., Del Bigio, M.R., Alizadeh, J., Ghavami, S., Zachariah, R.M., & Rastegar, M. (2015). Cellular commitment in the developing cerebellum. Front. Cell. Neurosci., 8(450), 1-26. doi: 10.3389/fncel.2014.00450.

Chang, J.C., Leung, M., Gokozan, H.N., Gygli, P.E., Catacutan, F.P., Czeisler, C., & Otero, J.J. (2015). Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice. J. Neuropathol. Exp. Neurol., 74(3), 261-272. doi:10.1097/NEN.0000000000000171.

Reidy, K.J., & Rosenblum, N.D. (2009). Cell and molecular biology of kidney development. Semin. Nephrol., 29(4), 321-337. doi: 10.1016/j.semnephrol.2009.03.009.

Woolf, A.S., Gnudi, L., & Long, D.A. (2009). Roles of angiopoietins in kidney development and disease. J. Am. Soc. Nephrol., 20(2), 239-244. doi: 10.1681/ASN.2008020243.

Hu, Y., Gomez, A., & Sequeira-Lopez, M.L.S. (2015). Hemovascular progenitors in the kidney require sphingosine-1-phosphate receptor 1 for vascular development. J. Am. Soc. Nephrol., 27(7), 1984-1995. doi: 10.1681/ASN.2015060610.

Halt, K.J., Parssinen, H.E., Junttila, S.M., Saarela, U., Sims-Lucas, S., Koivunen P., ...Vainio S.J. (2016). CD146+ cells are essential for kidney vasculature development. Kidney Int., 90(2), 311-324. doi: 10.1016/j.kint.2016.02.021.

Tsymbaliuk, V.I., Medvediev, V.V., Semenova, V.M., Grydina, N.Ya., Senchyk, Yu.Yu., Velychko, O.M. et al. (2016). Model peresichennia polovyny poperechnyka spynoho mozku. I. Tekhnichni, patomorfolohichni ta kliniko-experymentalni osoblyvosti [The model of spinal cord lateral hemisection. Part I. The technical, pathomorphological, clinical and experimental peculiarities]. Ukr. Neirokhirurh. Zhurnal – Ukrainian Neurosurgical Journal, 2, 18–27 [in Ukrainian].

Dong, H.W., Wang, L.H., Zhang, M., & Han, J.S. (2005). Decreased dynorphin A (1–17) in the spinal cord of spastic rats after the compressive injury. Brain Res. Bull., 67(3), 189-195. doi: 10.1016/j.brainresbull.2005.06.026.

Published

2017-06-19

How to Cite

Medvediev, V. V. (2017). Features Of The Paretic Limb Spasticity And Function Level Correlation After Different Types Of Neurotransplantation On The Model Of Spinal Cord Injury. Hospital Surgery. Journal Named by L.Ya. Kovalchuk, (1), 51–57. https://doi.org/10.11603/2414-4533.2017.1.7247

Issue

Section

EXPERIMENTAL INVESTIGATIONS