The variability of the paretic limb function and spasticity correlation for various restorative process flow on the spinal cord injury model

Authors

  • V. V. Medvediev National Academy of Medical Sciences of Ukraine, A. Romodanov Institute of Neurosurgery

DOI:

https://doi.org/10.11603/2414-4533.2016.4.7180

Abstract

The goal of the work – to explore the correlation of spasticity and function level of paretic limbs on the spinal cord injury model. Animals – white inbred males, rats (5.5 months, ~ 350 g); groups: “control” – the left-side spinal cord hemisection at T11 (n=16), “foreign body” – immediate implantation of fragment of the microporous hydrogel in the locus of spinal cord injury (n=10); “neurogel” – implantation of the NeuroGelTM fragment under similar conditions (n=20). Monitoring of the ipsilateral hind limb (IHL) function and spasticity indicator (FI and SI respectively) – Basso-Beattie-Bresnahan (BBB) scale and Ashworth scale, respectively. Implantation of NeuroGelTM significantly improves the efficiency of the functional recovery by 7 points of BBB scale, reduces spasticity by 1 point of Ashworth scale. Foreign body persistence worsens the course of the traumatic process during the 2nd–4th-month, significantly reduce IHL FI and increase SI. IHL FI and SI in groups “control” and “neurogel”, unlike the group “foreign body”, do not show a strong negative correlation (r > –0.75). In the group “neurogel” we found a positive correlation between IHL FI and SI during the observation period. Spinal cord regeneration significantly modifies IHL FI and SI correlation, probably by increasing the number of motoneurons effectively controlled by supraspinal influences.

References

Sekhon L. H. S. Epidemiology, demographics, and patho¬physiology of acute spinal cord injury [Text] / L. H. S. Sekhon, M.G. Fehlings // Spine (Phila Pa 1976). – 2001. – Vol. 26, Suppl 24. – P. 2–12.

Thuret S. Therapeutic interventions after spinal cord injury [Text] / S. Thuret, L. D. F. Moon, F. H. Gage // Nat. Rev. Neurosci. – 2006. – Vol. 7, No. 8. – P. 628–643.

The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate / B. B. Lee, R. A. Cripps, M. Fitzharris, R. S. Wing // Spinal Cord. – 2014. – Vol. 52, No. 2. – P. 110–116.

Neurorehabilitation with neural transplantation [Text] / M. Döbrössy, M. Busse, T. Piroth [et al.] // Neurorehabil. Neural Repair. – 2010. – Vol. 24, No. 8. – P. 692–701.

Middendorp van J. J. The Edwin Smith papyrus: a clinical reappraisal of the oldest known document on spinal injuries [Text] / J. J. van Middendorp, G. M. Sanchez, A. L. Burridge // Eur. Spine J. – 2010. – Vol. 19, No. 11. – P. 1815–1823.

Spinal traumas and their treatments according to Avicennaʺs Canon of Medicine [Text] / F. Ghaffari, M. Naseri, M. Movahhed, A. Zargaran // World Neurosurg. – 2015. – Vol. 84, No. 1. – P. 173–177.

Nowrouzi B. Spinal cord injury: a review of the most-cited publications / B. Nowrouzi // Eur. Spine J. – 2016 [Epub ahead of print].

Louie D. R. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study / D. R. Louie, J. J. Eng, T. Lam // J. Neuroeng. Rehabil. – 2015. – Vol. 12. – P. 1–10.

López-Larraz E. Control of an ambulatory exoskeleton with a brain–machine interface for spinal cord injury gait rehabilitation / E. López-Larraz // Front. Neurosci. – 2016. – Vol. 10, Article 359. – P. 1–15.

Miller L. E. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with metaanalysis / L. E. Miller, A. K. Zimmermann, W. G. Herbert // Med. Devices (Auckl). – 2016. – Vol. 9. – P. 455–466.

Assunção-Silva R. C. Hydrogels and cell based therapies in spinal cord injury regeneration [Text] / R. C. Assunção-Silva // Stem Cells International. – 2015. – Vol. 2015. – P. 1–24.

Siebert J. R. Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles [Text] / J. R. Siebert, A. M. Eade, D. J. Osterhout // Bio. Med. Res. Int. – 2015. – Vol. 2015. – P. 1–20.

Tsintou M. Advances in regenerative therapies for spinal cord injury: a biomaterials approach [Text] / M. Tsintou, K. Dalamagkas, A. M. Seifalian // Neural. Regen. Res. – 2015. – Vol. 10, No. 5. – P. 726–742.

Volpato F. Z. Using extracellular matrix for regenerative medicine in the spinal cord [Text] / F. Z. Volpato // Biomaterials. – 2013. – Vol. 34, No. 21. – P. 4945–4955.

Leach J. B. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology / J. B. Leach, A. K. H. Achyuta, S. K. Murthy // Front. Neuroeng. – 2010. – Vol. 2. – P. 1–19.

Maynard F. M. Epidemiology of spasticity following traumatic spinal cord injury / F. M. Maynard, R. S. Karunas, W. P. Waring // Arch. Phys. Med. Rehabil. – 1990. – Vol. 71, No. 8. – P. 566–569.

Skold C. Spasticity after traumatic spinal cord injury: nature, severity, and location [Text] / C. Skold, R. Levi, A. Seiger // Phys. Med. Rehabil. – 1999. – Vol. 80, No. 12. – P. 1548–1557.

Walters J. S. A database of self-reported secondary medical problems among VA spinal cord injury patients: its role in clinical care and management [Text] / J. S. Walters // J. Rehabil. Res. Dev. – 2002. – Vol. 39, No. 1. – P. 53–61.

Longitudinal changes in medical complications in adults with pediatric-onset spinal cord injury [Text] / M. Hwang, K. Zebracki, K. M. Chlan, L. C. Vogel // J. Spinal Cord Med. – 2014. – Vol. 37, No. 2. – P. 171–178.

Murray K. C. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors [Text] / K. C. Murray // Nature Med. – 2010. – Vol. 16, No. 6. – P. 694–701.

Heckman C. J. Motor unit [Text] / C. J. Heckman, R. M. Enoka // Compr. Physiol. – 2012. – Vol. 2, No. 4. – P. 2629–2682.

Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity [Text] / J. M. DʺAmico, E. G. Condliffe, K. J. B. Martins [et al.] // Front. Int. Neurosci. – 2014. – Vol. 8. – P. 1–24.

Di Narzo A. F. Decrease of mRNA editing after spinal cord injury is caused by down-regulation of ADAR2 that is triggered by inflammatory response [Text] / A. F. Di Narzo // Sci. Rep. – 2015. – Vol. 5. – P. 1–15.

Pandyan A. D. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity [Text] / A. D. Pandyan // Clin. Rehabil. – 1999. – Vol. 13, No. 5. – P. 373–383.

Bakheit A. M. O. The relation between Ashworth scale scores and the excitability of the a motor neurones in patients with post-stroke muscle spasticity [Text] / A. M. O. Bakheit // J. Neurol. Neurosurg. Psychiatry. – 2003. – Vol. 74. – P. 646–648.Biering-Sørensen F. Spasticity-assessment: a review [Text] / F. Biering-Sørensen, J. B. Nielsen, K. Klinge // Spinal Cord. – 2006. – Vol. 44. – P. 708–722.

Nielsen J. B. The spinal pathophysiology of spasticity – from a basic science point of view [Text] / J. B. Nielsen, C. Crone, H. Hultborn // Acta. Physiol. (Oxf). –2007. – Vol. 189, No. 2. – P. 171–180.

Malhotra S. Spasticity, an impairment that is poorly defined and poorly measured [Text] / S. Malhotra // Clin. Rehabil. – 2009. – Vol. 23, No. 7. – P. 651–658.

Roy R. R. Neurobiological perspective of spasticity as occurs after a spinal cord injury / R. R. Roy, V. R. Edgerton // Exp. Neurol. – 2012. – Vol. 235. – P. 116–122.

Strain and model differences in behavioral outcomes after spinal cord injury in rat / C. D. Mills, B. C. Hains, K. M. Johnson, C. E. Hulsebosch. // J. Neurotrauma. – 2001. – Vol. 18, No. 8. – P. 743–756.

Decreased dynorphin A (1–17) in the spinal cord of spastic rats after the compressive injury [Text] / H. W. Dong, L. H. Wang, M. Zhang, J. S. Han // Brain Res. Bull. – 2005. – Vol. 67, No. 3. – P. 189–195.

Majczynski H. Locomotor recovery after thoracic spinal cord lesions in cats, rats and humans / H. Majczynski, U. Slawinska // Acta Neurobiol. Exp. (Wars). – 2007. – Vol. 67, No. 3. – P. 235–257.

Spontaneous recovery of hindlimb movement in completely spinal cord transected mice: a comparison of assessment methods and conditions / R. V. Ung, N. P. Lapointe, C. Tremblay [et al.] // Spinal Cord. – 2007. – Vol. 45, No. 5. – P. 367–379.

Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome / L. Filli, B. Zörner, O. Weinmann, M. E. Schwab // Brain. – 2011. – Vol. 134, Pt. 8. – P. 2261–2273.

Vierck C. J. Evaluation of lateral spinal hemisection as a preclinical model of spinal cord injury pain / C. J. Vierck, R. L. Cannon, A. J. Acosta-Rua // Exp. Brain Res. – 2013. – Vol. 228, No. 3. – P. 305–312.

Hahm S. C. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats [Text] / S. C. Hahm, Y. W. Yoon, J. Kim // Neurorehabil. Neural Repair. – 2015. – Vol. 29, No. 4. – P. 370–381.

Spinal shock revisited : a four–phase model [Text] / J. F Ditunno, J. W. Little, A. Tessler, A. S. Burns // Spinal Cord. – 2004. – Vol. 42, No. 7. – P. 383–395.

TSymbalyuk V. Y. Spynnoy moz·h. Élehyya nadezhdy / V. Y. TSymbalyuk, V. V. Medvedev. – Vynnytsa : Nova Knyha, 2010. – 944 s.

Modelʹ peresichennya polovyny poperechnyka spynnoho mozku. CH. I. Tekhnichni, patomorfolohichni ta kliniko-eksperymentalʹni osoblyvosti / V. I. Tsymbalyuk, V. V. Medvedyev, V. M. Semenova [ta in.] // Ukr. neyrokhirurh. zhurnal. – 2016. – № 2. – S. 18–27.

Published

2017-02-09

How to Cite

Medvediev, V. V. (2017). The variability of the paretic limb function and spasticity correlation for various restorative process flow on the spinal cord injury model. Hospital Surgery. Journal Named by L.Ya. Kovalchuk, (4). https://doi.org/10.11603/2414-4533.2016.4.7180

Issue

Section

EXPERIMENTAL INVESTIGATIONS