DEVELOPMENT AND CHARACTERIZATION OF POLYMERIC SOLID DISPERSED SYSTEMS OF NIMESULIDE OBTAINED BY SPRAY DRYING

Authors

DOI:

https://doi.org/10.11603/2312-0967.2024.4.15055

Keywords:

nimesulide, solid dispersed system, spray drying, solubility improvement, polymer carrier, spectrophotometry, active pharmaceutical ingredient

Abstract

The aim of the work - development of polymeric solid dispersed systems (SDS) of nimesulide by spray drying, study of their physicochemical characteristics and kinetics of release of the active pharmaceutical ingredient (API) from the obtained composites in vitro.

Materials and Methods. Solid dispersed systems of nimesulide based on pharmaceutically acceptable polymeric carrier polyvinylpyrrolidone (PVP) of different molecular weights (PVP K-12, PVP K-17, PVP K-25) were obtained using a Mini Spray Dryer B-290 (Büchi Labortechnik AG, Switzerland). The physicochemical characteristics of the developed solid dispersed systems were studied by Fourier transform infrared  (FTIR) spectroscopy using a Nicolet IS50 FTIR spectrometer with an ATR diamond crystal (Thermo Fisher Scientific, USA), as well as by differential scanning calorimetry using a DSC Q2000 device (TA Instruments, USA). The release kinetics of nimesulide from SDS was studied according to the dissolution test method for solid dosage forms in accordance with the requirements of the State Pharmacopoeia of Ukraine using a Vankel Varian VK 7000 dissolution tester with an external water heater VK 750D (Vankel, USA).

Results and Discussion. It has been established that the molecular weight of PVP affects both the degree of improvement of the water solubility of nimesulide in solid dispersed systems and the yield of the resulting composites. It was proved that the solubility of nimesulide in SDS based on PVP obtained by spray drying increases directly proportionally with a decrease in the molecular weight of the polymer. Among the studied samples, the solid dispersed system based on PVP K-12 is characterized by the highest percentage yield of SDS (82%) and the best indicator of increasing the solubility of nimesulide in water (5.84 times).

The results of differential scanning calorimetry confirmed the amorphization of nimesulide in the composition of solid dispersed systems obtained by spray drying. Using FTIR spectroscopy, it was proved that the interaction of nimesulide with polyvinylpyrrolide K-12 in the obtained SDS is carried out through the formation of intermolecular hydrogen bonds.

In vitro release kinetics studies using the “Dissolution” test showed that in all buffer media used (pH=6.8, 7.4 and 7.8) the degree of dissolution of the API in the composition of the spray-dried SDS is better compared to the original drug product “Aulin”, granules for oral suspension 100 mg/2g. Thus, in a buffered medium with pH=6.8, after 30 minutes of the test, the degree of dissolution of nimesulide in solid dispersed systems was about 14%, while the comparison drug “Aulin” showed only 8% dissolution of the API.

Conclusions. The spray drying method is an effective technological process for obtaining solid dispersed systems of nimesulide with increased solubility. This approach opens up new opportunities for the development of anti-inflammatory drugs based on nimesulide SDS with improved pharmacokinetic characteristics.

Author Biographies

V. G. Kostiuk, Kyiv National University of Technologies and Design

Postgraduate-student of Department of Industrial Pharmacy

V. I. Bessarabov, Kyiv National University of Technologies and Design; L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine

DSc (Technical Sciences), Professor, Professor of Department of Industrial Pharmacy

References

Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci. 2023;182:106374. DOI: 10.1016/j.ejps.2023.106374 DOI: https://doi.org/10.1016/j.ejps.2023.106374

Boyd BJ, Bergström CAS, Vinarov Z, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. DOI: 10.1016/j.ejps.2019.104967 DOI: https://doi.org/10.1016/j.ejps.2019.104967

Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. 2015;23(4):352-65. DOI: 10.1016/j.jsps.2013.12.013 DOI: https://doi.org/10.1016/j.jsps.2013.12.013

Paudwal G, Rawat N, Gupta R, Baldi A, Singh G, Gupta PN. Recent Advances in Solid Dispersion Technology for Efficient Delivery of Poorly Water-Soluble Drugs. Curr Pharm Des. 2019;25(13):1524-35. DOI: 10.2174/1381612825666190618121553 DOI: https://doi.org/10.2174/1381612825666190618121553

Tekade AR, Yadav JN. A Review on Solid Dispersion and Carriers Used Therein for Solubility Enhancement of Poorly Water Soluble Drugs. Adv Pharm Bull. 2020;10(3):359-69. DOI: 10.34172/apb.2020.044 DOI: https://doi.org/10.34172/apb.2020.044

Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics. 2019;11(3):132. DOI: 10.3390/pharmaceutics11030132 DOI: https://doi.org/10.3390/pharmaceutics11030132

Nair AR, Lakshman YD, Anand VSK, Sree KSN, Bhat K, Dengale SJ. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech. 2020;21(8):309. DOI: 10.1208/s12249-020-01849-z DOI: https://doi.org/10.1208/s12249-020-01849-z

Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel). 2020;12(5):1114. DOI: 10.3390/polym12051114 DOI: https://doi.org/10.3390/polym12051114

Lisovyi VM, Lyzhniuk VV, Kostiuk VG, Pashchenko IO, Smishko RO, Goy AM, Povshedna IO, Ishchenko OV, Yaremenko VV, Bessarabov VI. Technologies for the obtaining highly soluble polymer composite materials with active pharmaceutical ingredients. Technologies and Engineering. 2023;3(14):26-35. DOI: 10.30857/2786-5371.2023.3.3 DOI: https://doi.org/10.30857/2786-5371.2023.3.3

Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci. 2023;18(4):100834. DOI: 10.1016/j.ajps.2023.100834 DOI: https://doi.org/10.1016/j.ajps.2023.100834

Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999-1022. DOI: 10.1007/s11095-007-9475-1 DOI: https://doi.org/10.1007/s11095-007-9475-1

Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27-50. DOI: 10.1016/j.addr.2015.12.010 DOI: https://doi.org/10.1016/j.addr.2015.12.010

Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253-84. DOI: 10.1016/j.ijpharm.2012.07.015 DOI: https://doi.org/10.1016/j.ijpharm.2012.07.015

Rainsford KD. Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology. 2006;14(3-4):120-37. DOI: 10.1007/s10787-006-1505-9 DOI: https://doi.org/10.1007/s10787-006-1505-9

Singla AK, Chawla M, Singh A. Nimesulide: some pharmaceutical and pharmacological aspects--an update. J Pharm Pharmacol. 2000;52(5):467-86. DOI: 10.1211/0022357001774255 DOI: https://doi.org/10.1211/0022357001774255

Dallegri F, Ottonello L. Are there any differences among non-steroidal anti-inflammatory drugs? Focus on nimesulide. Clin Drug Investig. 2007;27 Suppl 1:15-22. DOI: 10.2165/00044011-200727001-00004 DOI: https://doi.org/10.2165/00044011-200727001-00004

Catarro M, Serrano JL, Ramos SS, Silvestre S, Almeida P. Nimesulide analogues: From anti-inflammatory to antitumor agents. Bioorg Chem. 2019;88:102966. DOI: 10.1016/j.bioorg.2019.102966 DOI: https://doi.org/10.1016/j.bioorg.2019.102966

Chowdary KP, Nalluri BN. Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev Ind Pharm. 2000;26(11):1217-20. DOI: 10.1081/ddc-100100995 DOI: https://doi.org/10.1081/DDC-100100995

Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162-71. DOI: 10.1016/j.ejpb.2009.04.005 DOI: https://doi.org/10.1016/j.ejpb.2009.04.005

Di Martino P, Censi R, Barthélémy C, et al. Characterization and compaction behaviour of nimesulide crystal forms. Int J Pharm. 2007;342(1-2):137-44. DOI: 10.1016/j.ijpharm.2007.05.009 DOI: https://doi.org/10.1016/j.ijpharm.2007.05.009

Wang M, Liu S, Jia L, Zhang J, Du S, Gong J. Exploring the physical stability of three nimesulide-indomethacin co-amorphous systems from the perspective of molecular aggregates. Eur J Pharm Sci. 2020;147:105294. DOI: 10.1016/j.ejps.2020.105294 DOI: https://doi.org/10.1016/j.ejps.2020.105294

Zhao YM. Preparation of nimesulide solid dispersion by hot melt extrusion technology. Chinese Pharmaceutical Journal. 2013:185-90. DOI: 10.11669/cpj.2013.03.007

Ranendra S, Sajeev C, Priya K, Sreekhar C, Shashikanth G. Solubility enhancement of nimesulide and ibuprofen by solid dispersion technique. Indian Journal of Pharmaceutical Sciences. 2002;64:529-34.

Kostiuk VG, Bessarabov VI. Validation of the spectrophotometric method for the quantitative determination of nimesulide in solid dispersions systems obtained by centrifugal fiber formation. Farmatsevtychnyi Zhurnal. 2024;4:39-51. DOI: 10.32352/0367-3057.4.24.04 DOI: https://doi.org/10.32352/0367-3057.4.24.04

Dissolution test for solid dosage forms. 2.9.3. State Pharmacopoeia of Ukraine. 2nd edition. Kharkiv: State Enterprise "Ukrainian Scientific Pharmacopoeial Center for the Quality of Medicinal Products", 2015;1:399-409. Ukrainian.

Georgescu M, Meltzer V, Stănculescu I, Pincu E. Thermal Behavior of the Nimesulide-Salicylic Acid Eutectic Mixtures Prepared by Mechanosynthesis and Recrystallization. Materials (Basel). 2021;14(24):7715. DOI: 10.3390/ma14247715 DOI: https://doi.org/10.3390/ma14247715

Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015;44(41):17883-905. DOI: 10.1039/c5dt02964c DOI: https://doi.org/10.1039/C5DT02964C

Abdelkader H, Abdallah OY, Salem HS. Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide. AAPS PharmSciTech. 2007;8(3):E65. DOI: 10.1208/pt0803065 DOI: https://doi.org/10.1208/pt0803065

Gradišar Centa U, Mihelčič M, Bobnar V, Remškar M, Slemenik Perše L. The effect of PVP on thermal, mechanical, and dielectric properties in PVDF-HFP/PVP thin film. Coatings. 2022;12(9):1241. DOI: 10.3390/coatings12091241 DOI: https://doi.org/10.3390/coatings12091241

Published

2024-12-30

How to Cite

Kostiuk, V. G., & Bessarabov, V. I. (2024). DEVELOPMENT AND CHARACTERIZATION OF POLYMERIC SOLID DISPERSED SYSTEMS OF NIMESULIDE OBTAINED BY SPRAY DRYING. Pharmaceutical Review Farmacevtičnij časopis, (4), 39–48. https://doi.org/10.11603/2312-0967.2024.4.15055

Issue

Section

Pharmaceutical technology, biopharmacy, homeopathy, biotechnology