USE OF IN SILICO RESEARCH METHODS TO PREDICT PHARMACOKINETIC PROPERTIES AND SEARCH OF THE BIOLOGICALLY ACTIVE SUBSTANCES
DOI:
https://doi.org/10.11603/2312-0967.2024.3.14868Keywords:
molecular docking, in silico research, virtual screening, affinity, intermolecular interaction, binding site, ligandAbstract
The aim of the work. Conduct a review of computer programs, software packages, and databases that are appropriate to use for conducting in silico research for the purpose of predicting pharmacokinetic properties and searching for biologically active compounds.
Materials and Methods. General scientific method of analysis and synthesis of English-language scientific articles published during the last decade using databases ‘PubMed’, ‘Google Scholar’, ‘Elsevier’, ‘ResearchGate’; methods of systematization, generalization and comparative analysis of databases of computer programs, software packages and data for in silico research; the abstract-logical method was used in the formation of conclusions.
Results and Discussion. The article considers the use of computer programs, software packages and databases for conducting in silico research - methods of research using a computer or computer simulation, for the application of which it is advisable to take into account the molecular mechanisms of the disease, the search and analysis of biological targets for the proposed ligands, calculation of pharmacokinetic parameters, identification of sites of ligands’ metabolism, modeling of intermolecular interaction in order to determine the best ligand-target affinity, which generally leads to a reduction of time, financial and human costs during the search for biologically active compounds. Thanks to molecular docking, it is possible to predict the effectiveness of the ligand-target interaction at the molecular level, and other methods of in silico research allow us to outline structure-activity relationships (SAR, QSAR analysis). Recent advances in chemoinformatics have allowed researchers to use freely available computer programs, software packages, and databases to model the types of intermolecular interactions, calculate binding energy, surface area of a molecule, values of hydrophilicity, lipophilicity, drug-likeness, etc.
Conclusion. In silico research is a real tool for searching new chemical compounds as biologically active compounds, predicting polypharmacology and side effects for approved drugs, studying undesirable pharmacokinetics and toxicity, for the effective use of which it is advisable to use certain algorithms consisting of the following steps: 1) Disease selection and identification of target of biologically active compounds (target identification and validation); 2) Study of the type and structure of active substances in pharmaceuticals and screening analysis of compounds to identify new compounds (Hit discovery) through high-throughput screening (HTS) or in silico methods, in particular virtual screening (VS); 3) Modeling of ligands taking into account ADME/Tox properties (Lead optimisation); 4) Selection of the target receptor, its preparation for in silico research, selection of the binding site of the ligand to the receptor; 5) Search in databases of chemical compounds, drugs, their modification or virtual modeling of the ligand taking into account drug similarity descriptors; 6) Analysis the results of ligand-receptor interaction, visualization of the results of molecular docking.
References
Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. DOI: 10.3390/ijms20184331.
Wang Q, Pang YP. Preference of small molecules for local minimum conformations when binding to proteins. PLoS ONE. 2007;2(9):e820. DOI: 10.1371%2Fjournal.pone.0000820.
Eweas A, Namarneh M. Advances in molecular modeling and docking as a tool for modern drug discovery. Der Pharma Chemica. 2014;6(6):211-28.
Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A Guide to In Silico Drug Design. Pharmaceutics. 2022;15(1):49. DOI: 10.3390/pharmaceutics15010049.
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-62. DOI: 10.1016/j.apsb.2022.02.002.
Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;4(44):1075-9. DOI: 10.1093/nar/gkv1075.
Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu AP, Cao DS. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. 2018;10(1):29. DOI: 10.1186/s13321-018-0283-x.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;42717. DOI: 10.1038/srep42717.
Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. DOI: 10.1021/acs.jmedchem.5b00104.
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52(4):609-23. DOI: 10.1002/prot.10465.
PreADMET. Available from: https://preadmet.webservice.bmdrc.org/.
Hughes TB, Miller GP, Swamidass SJ. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network. ACS Central Science, 2015;1(4):168-80. DOI: 10.1021/acscentsci.5b00131.
Hughes TB, Swamidass SJ. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism. Chem. Res. Toxicol. 2017;30(2):642–56. DOI: 10.1021%2Facs.chemrestox.6b00385.
Hughes TB, Miller GP, Swamidass SJ. Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with Glutathione. Chemical Research in Toxicology. 2015;28(4):797-809. DOI: 10.1021/acs.chemrestox.5b00017.
Hughes TB, Dang NL, Miller GP, Swamidass SJ. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network. ACS Cent. Sci. 2016;2(8):529-37. DOI: 10.1021/acscentsci.6b00162.
Dang NL, Hughes TB, Miller GP, Swamidass SJ. Computationally Assessing the Bioactivation of Drugs by N-Dealkylation. Chem Res Toxicol. 2018;31(2):68-80. DOI: 10.1021/acs.chemrestox.7b00191.
Hughes TB, Swamidass SJ. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism. Chem. Res. Toxicol. 2017;30(2):642-56. DOI: 10.1021/acs.chemrestox.6b00385.
Dang NL, Matlock MK, Hughes TB, Swamidass SJ. The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors. Journal of Chemical Information and Modeling, 2020;60(3):1146-64. DOI: 10.1021/acs.jcim.9b00836.
Dang NL, Hughes TB, Krishnamurthy V, Swamidass SJ. A Simple Model Predicts UGT-Mediated Metabolism. Bioinformatics. 2016;32(20):3183-89. DOI: 10.1093/bioinformatics/btw350.
Kabir A, Muth A. Polypharmacology: The science of multi-targeting molecules. Pharmacol Res. 2022;176:106055. DOI: 10.1016/j.phrs.2021.106055.
Minie M, Chopra G, Sethi G, Horst J, White G, Roy A, Hatti K, Samudrala R. CANDO and the infinite drug discovery frontier. Drug Discov Today. 2014;19(9):1353-63. DOI: 10.1016/j.drudis.2014.06.018.
Saini M, Parihar N, Soni S, Sharma V. Drug Repurposing: An Overviev. Asian Journal of Pharmaceutical Research and Development. 2020;8(4):194-212. DOI: 10.22270/ajprd.v8i4.634.
Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model. 2011;51:408-19. DOI: 10.1021/ci100369f.
How to pick the best PDB structure for your target protein: A Comprehensive Guide. Available from:
Gan JH, Liu JX, Liu Y, Chen SW, Dai WT, Xiao ZX, Cao Y. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol Sin. 2023;44(4):888-896. DOI: 10.1038/s41401-022-00996-2.
Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015;43(W1):W436-42. DOI: 10.1093/nar/gkv462
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM et al. A practical guide to large-scale docking. Nat Protoc. 2021;16(10):4799-4832. DOI: 10.1038/s41596-021-00597-z.
Purnawan P. Docking Tutorial Using Autodock Vina version 1.2.3 (2021) and AutoDock-GPU Version 1.5.3. ResearchGate. 2022. DOI:10.13140/RG.2.2.23334.60483.
Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, Moroz YS et al. ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J Chem Inf Model. 2020;60(12):6065-73. DOI: 10.1021/acs.jcim.0c00675.
Sterling T, Irwin JJ. ZINC 15--Ligand Discovery for Everyone. J Chem Inf Model. 2015;55(11):2324-37. DOI: 10.1021/acs.jcim.5b00559.
Hann MM, Oprea TI. Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol. 2004;8(3):255-63. DOI: 10.1016/j.cbpa.2004.04.003.
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235-49. DOI: 10.1016/s1056-8719(00)00107-6.
David R, Armstrong B, Matthew C, Alice C, Deepti G, Abhik M. Protein Structure Databases. Encyclopedia of Bioinformatics and Computational Biology. Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors. Academic Press; 2019. p. 460-71. DOI: 10.1016/B978-0-12-809633-8.20280-X.
Godnow RA, Jr P, Bleicher K. Chemoinformatic tools for library and the hit-to-lead process: a user’s perspective. OPREA, T.1. (ed.) Willey-VCH, Weinheim; 2004. P. 381-435.
Skinnider MA, Stacey RG, Wishart DS. Chemical language models enable navigation in sparsely populated chemical space. Nat Mach Intell; 2021;3:759-70. DOI: 10.1038/s42256-021-00368-1.
Irwin JJ, Shoichet BK. ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177-82. DOI: 10.1021/ci049714+.
Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, de Veij M et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024;52(D1):D1180-92. DOI: 10.1093/nar/gkad1004.
United National Library of Medicine, National Institutes of Health, Hazardous Substance Data Bank (HSDB), Toxicology Data Network®, Bethesda, MD. Available from: http://toxnet.nlm.nih.gov.
Bayne K, Laws M. Regulations and Policies Relating to the Care and Use of Nonhuman Primates in Biomedical Research. In: Abee K, Mansfield K, Tardif S, Morris T, editors. American College of Laboratory Animal Medicine, Nonhuman Primates in Biomedical Research (2-nd Ed.), Academic Press; 2012. p. 35-56. DOI: 10.1016/B978-0-12-381365-7.00002-9.
Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011;39:D1035-41. DOI: 10.1093/nar/gkq1126.
Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011;39:D1035-41. DOI: 10.1093/nar/gkq1126.
Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J et al. An overview of the PubChem BioAssay resource. Nucleic Acids Res. 2010;38:D255-66. DOI: 10.1093/nar/gkp965.
Shivanyuk A, Ryabukhin S, Bogolyubsky AV, Mykytenko DM. Enamine real database: Making chemical diversity real. Chimica Oggi. 2007;25:58-59.
Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P. ChemDB update--full-text search and virtual chemical space. Bioinformatics. 2007 Sep 1;23(17):2348-51. DOI: 10.1093/bioinformatics/btm341.
Seiler KP, George GA, Happ MP, Bodycombe NE, Carrinski HA, Norton S, Brudz S et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res. 2008;36:D351-9. DOI: 10.1093/nar/gkm843.
Rio A, Barbosa AM, Caporuscio F. CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol. BioSyst. 2010;6(11):2122-28. DOI:10.1186/1758-2946-3-S1-P2.
Chen H, Kogej T, Engkvist O. Cheminformatics in Drug Discovery, an Industrial Perspective. Mol Inform. 2018;37(9-10):e1800041. DOI: 10.1002/minf.201800041.
Khalfaoui A, Noumi E, Belaabed S, Aouadi K, Lamjed B, Adnan M, Defant A et al. LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts. Antioxidants (Basel). 2021;10(4):628. DOI: 10.3390/antiox10040628.
Roche O, Guba W. Computational chemistry as an integral component of lead generation. Mini Rev Med Chem. 2005;5(7):677-83. DOI: 10.2174/1389557054368826.
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel). 2023;12(3):463. DOI: 10.3390/antibiotics12030463.
Morris GM, Goodsell DS, Halliday RS. Automated docking using a La-marckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19(14):1639-62.
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15(5):411-28. DOI: 10.1023/a:1011115820450.
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52(4):609-23. DOI: 10.1002/prot.10465.
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M et al. A critical assessment of docking programs and scoring functions. J Med Chem. 2006;49(20):5912-31. DOI: 10.1021/jm050362n.
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-49. DOI: 10.1021/jm0306430.
McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26(8):897-906. DOI: 10.1007/s10822-012-9584-8.
Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52(1):80-7. DOI: 10.1002/prot.10389.
Lohning AE, Levonis SM, Williams-Noonan B, Schweiker SS. A Practical Guide to Molecular Docking and Homology Modelling for Medicinal Chemists. Curr Top Med Chem. 2017;17(18):2023-2040. DOI: 10.2174/1568026617666170130110827.
Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J Chem Inf Model. 2012;52(11):2950-7. DOI: 10.1021/ci300447c.
Burlacu A. Computational Drug Discovery and Design. 2nd ed. Humana press. 2023. 356 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pharmaceutical Review / Farmacevtičnij časopis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish their materials in this journal agree with the following terms:
- Authors reserve the right to authorship of their work and assign to the journal the right to first publish this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute the published work with a mandatory reference to the authors of original work and the first publication of work in this journal .
- Authors have the right to make independent extra-exclusive work agreements in the form they are published by this journal (for example, posting work in an electronic repository of an institution or publishing as part of a monograph), provided that the link to the first publication of the work in this journal is maintained.
Journal policy allows and encourages publication of manuscripts on the Internet (for example, in institutions repositories or on personal websites), both before the publication of this manuscript and during its editorial review, as it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the citation of the published work (see The Effect of Open Access).