ROLE OF GENETICAL MODIFICATIONS OF FACTORS OF NATURAL IMMUNODEFENCE AT MENINGITIS

Authors

  • V. I. Shulyak Zaporizhzhia

DOI:

https://doi.org/10.11603/1681-2727.2016.4.7221

Keywords:

meningitis, natural immunodefence, genes, single nucleotide polymorphism.

Abstract

Meningitis (M) is a serious life-threatening infectious disease of central nervous system (CNS), which still remains relevance as topical problem of treatment, because it attends with the big percent of complications and residual phenomenons. Inflammatory diseases of CNS can refer to the category of illnesses with a genetical predisposition (multifactorial). The clinical finding of those diseases is formed as a combination of various pathogenetic parts and action of «starting» factors of environment.. Often those pathogenetic parts are damaged by different mutations of genes.

 The first line of protection against pathogens is provided by humoral and cellular factors of natural immunodefence which are supervised by genes of the germinal line and don’t variate in the course of the organism life. The most important humoral factors of natural immunodefence are complement, properdin and cytokines. Defects of the genes, which code humoral components of natural immunodefence, lead to disturbances of one of three paths of activation of complement and to development insufficiency of the production of properdin. Effect of those genetical disturbances is the essentiale increasing of susceptibility to meningitis and bacteriogenous infections of Str. pneumoniae, Str. pyogenes, H.influenzae and Neisseria meningitis. As a system of cytokines is polyfunctionality and redundancy, the absence of any cytokine caused by mutations of the conforming genes doesn’t cause catastrophic consequences. The essential role in a nonspecific part of immune system is played by cellular factors - phagocytes. Insufficiency of function of phagocytosis can associated with the genetically conditional reduction of quantity of phagocytes, structurally functional changes of phagocytes, changes of humoral -hormonal regulation of phagocytosis. The recognition of originators by phagocytes has a great value for efective function of  natural immunodefence. Recognition of pathogens is carried out simultaneously by several specialised systems of a pattern-distinguishing receptors (PRRs). PRRs are coded by genetically line and aren’t a subject of rearrangement. SNPs in genes of the PRRs lead to generation defective products of recognition and associate with susceptibility to meningococcal and pneumococcal meningitis, as well as TIC-born encephalitis. As a result of intracellular recognition in macrophages and neutrophils there is a formation of the inflamassome, which starts carrying out of the inflammatory reaction. SNPs in inflamassome genes are bonded with adverse outcome of meningitis. As a result of phagocytes activation there is begining of destruction mechanisms of absorbed bacteria. These mechanisms can realized intracellularly and extracellularly, by oxygen-depending and oxygen-independing methods. The most widespread form of disturbance of killing is defect of X-chromosome. Defects of killing set conditions for the relapsing infectious diseases, which are caused by various gram-negative (Escherichia coli, Serratia marcens, Klebsiella pneumonia) and gramme-positive (Staphylococcus aureus) microorganisms.

References

Heckenberg, S. G., de Gans, J., Brouwer, M. C. (2008). Clinical features, outcome, and meningococcal genotype in 258 adults with meningococcal meningitis: a prospective cohort study. Medicine (Baltimore), 87(4), 185-192.

Brouwer, M. C., Tunkel, A. R., van de Beek, D. (2010). Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin. Microbiol. Rev., 23, 467-492.

Nikiforov, V. A., Kichikova, V. V., Yefimov, Ye. I. (2011). Aktual'nyye i nereshennyye problemy meningokokkovoy infektsii na sovremennom etape. Meditsinskiy al'manakh, (4), 94-99.

Zabbarova, A. T. (2013). Gidrotsefaliya posle perenesennogo meningita: sovremennoye sostoyaniye problemy. Vestnik sovremennoy klinicheskoy meditsiny (Kazan'), 6(3), 99-100.

Skripchenko, N. V., Kulikova, K. A. (2014). Sovremennyye patofiziologicheskiye aspekty bakterial'nykh meningoentsefalitov. Infektsionnyye bolezni, 12(2), 76-82.

Steens, A., Eriksen, H.-M., Blystad, H. (2014). What are the most important infectious diseases among those ≥65 years: a comprehensive analysis on notifiable diseases, Norway, 1993–2011. BMC Infectious Diseases, (14), 57.

Hart, J. Jr., Tillman, G., Kraut, M. A. (2014). NIAID Collaborative Antiviral Study Group West Nile Virus 210 Protocol Team. West Nile virus neuroinvasive disease: neurological manifestations and prospective longitudinal outcomes. BMC Infect. Dis., (14), 248.

Heckenberg, S. G., Brouwer, M. C., van de Beek, D. (2014). Bacterial meningitis. Handb. Clin. Neurol., 121, 1361-1375.

Skoczyсska, A., Kadіubowski, M., Knap, J. (2006). Invasive meningococcal disease associated with a very high case fatality rate in the North-West of Poland. FEMS Immunol. Med. Microbiol., 46(2), 230-235.

Harboe, Z. B., Thomsen, R. W., Riis, A. (2009). Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med., 6(5), e:1000081.

Rubach, M. P., Bender, J. M., Mottice, S. (2011). Increasing incidence of invasive Haemophilus influenzae disease in adults, Utah, USA. Emerg. Infect. Dis., 17(9), 1645-1650.

McIntyre, P. B., O'Brien, K. L., Greenwood, B., van de Beek, D. (2012). Effect of vaccines on bacterial meningitis worldwide. Lancet, 380(9854), 1703-1711.

Vengerov YU. YA. (2013). Pnevmokokkovyy meningit. Problema vysokoy letal'nosti. Lechashchiy vrach, (5), 14-16.

Ladhani S. N. (2013). Invasive pneumococcal disease after routine pneumococcal conjugate vaccination in children, England and Wales. Emerg. Infect. Dis., 19(1), 61-68.

Imцhl, M., Mцller, J., Reinert, R. (2015). Pneumococcal meningitis and vaccine effects in the era of conjugate vaccination: results of 20 years of nationwide surveillance in Germany. BMC Infectious Diseases, (15), 61.

Crawford, D. C., Zimmer, S. M., Morin, C. A. (2008). Integrating host genomics with surveillance for invasive bacterial diseases. Emerg. Infect. Dis., 14(7), 1138-1140.

Hjuler, T., Poulsen, G., Wohlfahrt, J. (2008). Genetic susceptibility to severe infection in families with invasive pneumococcal disease. Am. J. Epidemiol., 167(7), 814-819.

Brouwer, M. C., de Gans, J., Heckenberg S. G. (2009). Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect. Dis., 9(1), 31-44.

Lyons, E. J., Amos, W., Berkley, J. A. (2009). Homozygosity and risk of childhood death due to invasive bacterial disease. BMC Med. Genet., (10), 55.

Brouwer, M. C., Read, R. C., van de Beek, D. (2010). Host genetics and outcome in meningococcal disease: a systematic review and meta-analysis. Lancet Infect. Dis., (10), 262-274.

Loeb, M., Eskandarian, S., Rupp, M. (2011). Genetic variants and susceptibility to neurological complications following West Nile virus infection. J. Infect. Dis., 204(7), 1031-1037.

Sanders, M. S., van Well, G. T., Ouburg, S., Morrй, S. A., van Furth, A. M. (2011). Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun., 12(5), 321-334.

Cruc, M., Franзois, N., Gentile, A. (2013). Why meningococcal meningitis is still lethal: response in genes? Presse Med., 42(3), 363-365.

Lavezzo, E., Toppo, S., Franchin, E. (2013). Genomic comparative analysis and gene function prediction in infectious diseases: application to the investigation of a meningitis outbreak. BMC Infectious Diseases, (13), 554.

Sanders, M. S., de Jonge, R. C., Terwee, C. B. (2013). Addition of host genetic variants in a prediction rule for post meningitis hearing loss in childhood: a model updating study. BMC Infect. Dis., 23(13), 340.

Ginter, Ye. K. (2003). Meditsinskaya genetika. M.: Meditsina.

Bochkov N. P. (2002). Klinicheskaya genetika: uchebnik. M.: GEOTAR – MED.

Yarilin A. A. (2010). Immunologiya. M.: GEOTAR-Media.

Abdelmalek, R., Kallel Sallemi, M., Zerzri, Y. (2011). Hereditary complement deficiency in Tunisian adults with purulent meningitis. Med. Mal. Infect., 41(4), 206-208.

Skattum L., van Deuren, M., van der Poll, T., Truedsson, L. (2011). Complement deficiency states and associated infections. Mol. Immunol., 48(14), 1643-1655.

Adriani, K. S., Brouwer, M. C., Geldhoff, M. (2013). Common polymorphisms in the complement system and susceptiblity to bacterial meningitis. J. Infect., 66(3), 255-262.

Jaatinen, T., Lahti, M., Ruuskanen, O. (2003). Total C4B deficiency due to gene deletion and gene conversion in a patient with severe infections. Clin. Diagn. Lab. Immunol., 10 (2), 195-201.

Vardar, F., Pehlivan, S., Onay, H. (2007). Association between mannose binding lectin polymorphisms and predisposition to bacterial meningitis. Turk. J. Pediatr., 49(3), 270-273.

Lima Filho, A., Carmo, R., Cavalcanti, M. (2012). Complement and mannose-binding lectin 2 polymorphism in meningococcal disease. Clin. Lab., 58(11-12), 1165-1169.

Brouwer, M. C., Baas, F., van der Ende, A., van de Beek, D. (2013). Genetic variation and cerebrospinal fluid levels of mannose binding lectin in pneumococcal meningitis patients. PLoS One, 8(5), e:65151.

Jaatinen, T., Lahti, M., Ruuskanen, O. (2003). Total C4B deficiency due to gene deletion and gene conversion in a patient with severe infections. Clin. Diagn. Lab. Immunol., 10(2), 195-201.

Lundbo, L. F., Harboe, Z. B., Clausen, L. N. (2014). Mannose-binding lectin gene, MBL2, polymorphisms are not associated with susceptibility to invasive pneumococcal disease in children. Clin. Infect. Dis., 59(4), 66-71.

Fries, L. F., O'Shea, J. J., Frank, M. M. (1986). Inherited deficiencies of complement and complement-related proteins. Clin. Immuno. Immunopathol., 40(1), 37-49.

Woehrl, B., Brouwer, M. C., Murr, C. (2011). Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J. Clin. Invest., 121(10), 3943-3953.

Orren, A., Owen, E. P., Henderson, H. E. et al. (2012). Complete deficiency of the sixth complement component (C6Q0), susceptibility to Neisseria meningitidis infections and analysis of the frequencies of C6Q0 gene defects in South Africans. Clin. Exp. Immunol., 167(3), 459-471.

Schirinzi, R., Lantin, J. P., Frйmeaux-Bacchi, V., Schifferli, J. A., Trendelenburg M. (2006). Combined-heterozygous deficiency of complement C7 in a patient with recurrent meningitis. Med. Klin. (Munich), 101(8), 655-658.

Arnold, D. F., Roberts, A. G., Thomas, A. (2009). A novel mutation in a patient with a deficiency of the eighth component of complement associated with recurrent meningococcal meningitis. Clin. Immunol., 29(5), 691-695.

Seitsonen, S., Helminen, M., Jarva, H., Meri, S., Jдrvelд, I. (2010). Properdin mutations a risk factor for meningitis. Duodecim, 126(9), 1071-1075.

Bathum, L., Hansen, H., Teisner, B. (2006). Association between combined properdin and mannose-binding lectin deficiency and infection with Neisseria meningitidis. Mol. Immunol., 43(5), 473-479.

Bodiyenkova, G. M., Titova, ZH. V. (2015). Rol' polimorfizma i ekspressii otdel'nykh genov tsitokinov v formirovanii patologii (Obzor). Uspekhi sovremennogo yestestvoznaniya, (1-4), 616-620.

Konenkov, V. I., Smol'nikova, M. V. (2003). Strukturnyye osnovy i funktsional'naya znachimost' allel'nogo polimorfizma genov tsitokinov cheloveka i ikh retseptorov. Meditsinskaya immunologiya, 5(1-2), 11-28.

Carrol, E. D., Payton, A., Payne, D. (2011). The IL1RN promoter rs4251961 correlates with IL-1 receptor antagonist concentrations in human infection and is differentially regulated by GATA-1. J. Immunol., 186(4), 2329-2335.

Titmarsh, C. J., Moscovis, S. M., Hall, S. (2013). Comparison of cytokine gene polymorphisms among Greek patients with invasive meningococcal disease or viral meningitis. J. Med. Microbiol., 62(5), 694-700.

Oztuzcu, S., Cakmak, E. A., Sivasli, E. (2011). Gene expression and promoter region polymorphisms of interleukin-10 in meningitis patients. Genet. Test. Mol. Biomarkers, 15(5), 327-331.

Abaturov, A. Ye. (2007). Rol' interferonov v zashchite respiratornogo trakta. Chast' 1. Kaskad vozbuzhdeniya sistemy interferonov. Zdorov'ye rebenka, (5), 8.

Mьller, U., Steinhoff, U., Reis, L.F. et al. (1994). Functional role of type I and type II interferons in antiviral defense. Science, 264(5167), 1918-1921.

Dale, D. C., Boxer, L., Liles, W. C. (2008). The phagocytes: neutrophils and monocytes. Blood, 112(4), 935-945.

Lange, C., Dьrr, C. M., Doster, H. (2007). Dendritic cell-regulatory T-cell interactions control self-directed immunity. Immunol. Cell. Biol., 85(8), 575-581.

Vorob'yeva, N. V. (2015). Molekulyarnyye mekhanizmy fagotsitoza. Obzor. Chast' 2. Rossiyskiy immunologicheskiy zhurnal, 9(18), 1, 5-13.

Kumagai, Y., Takeuchi, O., Akira, S. (2008). Pathogen recognition by innate receptors. J. Infect. Chemother., 14(2), 86-92.

Randhawa, A. K., Hawn, T. R. (2008). Toll-like receptors: their roles in bacterial recognition and respiratory infections. Expert. Rev. Anti. Infect. Ther., 6(4), 479-495.

Koval'chuk, L. V., Svitich, O. A., Gankovskaya, L. V., Mironshichenkova, A. M., Gankovskiy, V. A. (2012). Rol' Toll-podobnykh retseptorov v patogeneze infektsionnykh zabolevaniy cheloveka. Kurskiy nauchno-prakticheskiy vestnik «Chelovek i yego zdorov'ye», (2), 56-60.

Abaturov, A. Ye., Volosovets, A. P., Yulish, Ye. I. (2012). Rol' Toll-podobnykh retseptorov v rekognitsii patogen-assotsiirovannykh molekulyarnykh struktur infektsionnykh patogennykh agentov i razvitii vospaleniya. Chast' 1. Semeystvo TLR. Zdorov'ye rebenka, (1), 154-159.

Abaturov, A. Ye., Volosovets, A. P., Yulish, Ye. I. (2012). Rol' Toll-podobnykh retseptorov v rekognitsii patogen-assotsiirovannykh molekulyarnykh struktur infektsionnykh patogennykh agentov i razvitii vospaleniya. Chast' 3. Rekognitsiya ligandov TLR. Zdorov'ye rebenka, (7), 157-164.

Sanders, M. S., van Well, G. T., Ouburg, S. (2011). Single nucleotide polymorphisms in TLR9 are highly associated with susceptibility to bacterial meningitis in children. Clin. Infect. Dis., 52(4), 475-480.

Sanders, M. S., van Well, G. T., Ouburg, S., Morrй, S. A., van Furth, A. M. (2012). Toll-like receptor 9 polymorphisms are associated with severity variables in a cohort of meningococcal meningitis survivors. BMC Infect. Dis., (12), 112.

van Well, G. T., Sanders, M. S., Ouburg, S., van Furth, A. M., Morrй S. A. (2012). Polymorphisms in Toll-like receptors 2, 4, and 9 are highly associated with hearing loss in survivors of bacterial meningitis. PLoS One, 7(5), e35837.

van Well, G. T., Sanders, M. S., Ouburg, S. (2013). Single nucleotide polymorphisms in pathogen recognition receptor genes are associated with susceptibility to meningococcal meningitis in a pediatric cohort. PLoS One, 8(5), e64252.

Barkhash, A. V., Voevoda, M. I., Romaschenko, A. G. (2013). Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral. Res., 99(2), 136-138.

Ting, J. P., Lovering, R. C., Alnemri, E. S. (2008). The NLR gene family: a standard nomenclature. Immunity, 28(3), 285-287.

Abaturov, A. Ye., Volosovets, A. P., Yulish, Ye. I. (2013). Rol' NOD-podobnykh retseptorov v rekognitsii patogen-assotsiirovannykh molekulyarnykh struktur infektsionnykh patogennykh agentov i razvitii vospaleniya. Chast' 3a. Proteiny NLR semeystva, uchastvuyushchiye v aktivatsii ASC-assotsiirovannogo puti vozbuzhdeniya.. Inflammasomy. Zdorov'ye rebenka, (3), 140-147.

Martinon, F., Mayor, A., Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu. Rev. Immunol., (27), 229-265.

Geldhoff, M., Mook-Kanamori, B. B., Brouwer, M. C. (2013). Genetic variation in inflammasome genes is associated with outcome in bacterial meningitis. Immunogenetics, 65(1), 9-16.

Witzenrath, M., Pache, F., Lorenz, D. (2011). The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol., 187(1), 434-440.

Costa, A., Gupta, R., Signorino, G. (2012). Activation of the NLRP3 inflammasome by group B streptococci. J. Immunol., 188(4), 1953-1960.

Satoh, T., Kato, H., Kumagai, Y. (2010). LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Nat.. Acad. Sci. USA, 107(4), 1512-1517.

Abaturov, A. Ye., Volosovets, A. P., Yulish, Ye. I. (2013). Rol' RIG-podobnykh retseptorov v rekognitsii patogen-assotsiirovannykh molekulyarnykh struktur infektsionnykh patogennykh agentov i razvitii vospaleniya. Chast' 1. Semeystvo RLR. Zdorov'ye rebenka, (6), 177-183.

Komuro, A., Horvath, C. M. (2007). RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J. Virol., 80(24), 12332–12342.

Lakhtin, V. M., Lakhtin, M. V., Afanas'yev, S. S. (2008). Obshchiye svoystva i printsipy funktsionirovaniya lektinov v biosistemakh. Vestnik RAMN, (3), 37-42.

Mittal, R., Sukumaran, S. K., Selvaraj, S. K. (2010). Fcг receptor I alpha chain (CD64) expression in macrophages is critical for the onset of meningitis by Escherichia coli K1. PLoS Pathog., 6(11), e1001203.

Tezcan, I., Berkel, A.I., Ersoy, F., Sanal, O., Kanra, G. (1998). Fc gamma receptor allotypes in children with bacterial meningitis. A preliminary study. Turk. J. Pediatr., 40(4), 533-538.

Bouglй, A., Max, A., Mongardon, N. et al. (2012). Protective effects of FCGR2A polymorphism in invasive pneumococcal diseases. Chest, 142(6), 1474-1481.

Fang, F. C. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol., 2(10), 820-832.

Shatwell, K. P., Segal, A. W. (1996). NADPH oxidase. Int. J. Biochem. Cell Biol., 28(11), 1191-1195.

Klebanoff, S. J. (1999). Myeloperoxidase. Proc. Assoc. Am. Physicians, 111(5), 383-389.

Mills, E. L., Quie, P. G. (1980). Congenital disorders of the function of polymorphonuclear neutrophils. Rev. Infect. Dis., 2(3), 505-517.

Payton, A., Payne, D., Mankhambo, L.A. (2009). Nitric oxide synthase 2A (NOS2A) polymorphisms are not associated with invasive pneumococcal disease. BMC Med. Genet., 23(10), 28.

Brandenburg, L.O., Varoga, D., Nicolaeva, N. (2008). Role of glial cells in the functional expression of LL-37 rat cathelin-related antimicrobial peptide in meningitis. J. Neuropathol. Exp. Neurol., 67(11), 1041-1054.

Ricevuti, G. (1997). Host tissue damage by phagocytes. Ann. N. Y. Acad. Sci., (832), 426-448.

Barkhash, A.V., Perelygin, A.A., Babenko, V.N. (2012). Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral. Res., 93(1), 64-68.

Published

2017-02-10

How to Cite

Shulyak, V. I. (2017). ROLE OF GENETICAL MODIFICATIONS OF FACTORS OF NATURAL IMMUNODEFENCE AT MENINGITIS. Infectious Diseases – Infektsiyni Khvoroby, (4), 82–89. https://doi.org/10.11603/1681-2727.2016.4.7221

Issue

Section

Reviews and lectures