ANTIBIOTIC SUSCEPTIBILITY OF BIOFILM PRODUCING MICROORGANISMS ISOLATED FROM GUNSHOT WOUNDS

Authors

  • V. P. Kondratiuk M.I. Pyrohov Vinnytsia National Medical University
  • V. P. Kovalchuk Military Medical Clinical Centre Central Region
  • I. M. Kovalenko Military Medical Clinical Centre Central Region

DOI:

https://doi.org/10.11603/1681-2727.2016.4.7214

Keywords:

bacterial biofilm, antibiotic resistance, antibiotic concentration.

Abstract

Currently it is unclear whether direct correlation between biofilm formation and antibiotic resistance exist. In this study, we examined the relationship between antibiotic resistance and biofilm formation in clinical isolates.

Thirteen isolates were collected from gunshot wounds during 2014. Biofilm-forming capacities were evaluated using the crystal violet staining method. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) to amikacin, ceftriaxone, сefaperazon/clavulanic acid, ciprofloxacin, meronem, gatifloxacin, and levofloxacin were evaluated using micro dilution assays.

Susceptible in planktonic strains showed high resistance in form of biofilm. The MBEC of tested antibiotics for biofilmforming strains exeeded 500mcg/ml and was more than a hundred times higher than clinically attainable concentration. However, the correlation between the studied properties of A. baumannii strains was diverse: for meronem (r = –0,62), for cefoperazone with clavulanic acid (r = +0,62), for amikacin (r = +0,84). P. aeruginosa strains showed contradictory relation between biofilm forming and resistance. Results from this study imply that biofilm formation and antibiotic resistance acts as a separate mechanism for bacteria to get better survival, especially in isolates with weak resistance level.

Biofilm formation and antibiotic resistance acts as a separate mechanism for bacteria to get better survival, especially in isolates with weak resistance level.

References

McDougald, D., Rice, S.A., Barraud N. (2012). Should we stay or should we go: mechanisms and ecological consequences fobiofilm dispersal. Nat. Rev. Microbiol, 10, 39–50. doi:10.1038/nrmicro2695.

Cerqueira, G.M., Peleg, A.Y. (2011). Insights into Acinetobacter baumannii pathogenicity. IUBMB Life, 63, 1055 – 1060. doi: 10.1002/iub.533.

Abidi, S.H., Sherwani, S.K., Siddiqui, T.R., Bashir, A., Kazmi. S.U. (2013). Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi–Pakistan BMC Ophthalmol,13, 57. doi: 10.1186/1471-2415-13-57.

Eyoh, A. B., Toukam, M., Atashil, J., Fokunang, C., Gonsu, H., Lyonga, E. E. …, Assoumou, M. C. (2014). Relationship between multiple drug resistance and biofilm formation in Staphylococcus aureus isolated from medical and nonmedical personnel in Yaounde, Cameroon Pan. Afr. Med. J, 17, 186. doi: 10.11604/pamj.2014.17.186.2363.

Perez, L. R. (2015). Acinetobacter baumannii displays inverse relationship between meropenem resistance and biofilm production. J. Chemother., 27, 13–16. doi: 10.1179/1973947813Y.0000000159.

Sanchez, C. J., Mende, K., Beckius, M. L., Akers, K. S., Romano, D. R., Wenke J. C. …, Murray, C K. (2015). Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infectious Diseases, 13, 47. doi:10.1186/1471-2334-13-47.

Pro zatverdzhennya metodychnykh vkazivok shchodo vyznachennya chutlyvosti mikroorhanizmiv do antybakterial'nykh preparativ Nakaz,167 MOZ Ukrayiny (2007), (p. 63). Kyiv, UA: MOZ.

Stepanovic S., Bonaventura G.D., Vukovic D., Cirkovic, I., Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 9, 891−899. doi:10.1111/j.1600-0463.2007.apm_630.x.

Trofimenko, Yu. V. (2015). Biolohichni vlastyvosti mikroflory, shcho kolonizuye endotrakheal'ni intubatsiyni trubky u viddilennyakh intensyvnoyi terapiyi. (Unpublished doctoral dissertation). Vinnitsa National Pirogov Memorial Medical University, Ukraine, Vinnytsya.

Amsden, G.W., Mandell, G.L., Bennett, J.E., Dolin, R. (2009) Tables of antimicrobial agent pharmacology. In Amsden, G.W., Mandell, G.L., Bennett, J.E., Dolin, R. (eds.), Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (7th ed.), (pp. 705 – 764). Philadelphia, Ph: Elsevier.

Qi, L., Li, H., Zhang, C., Liang, B,. Li, J., Wang, L. …, Song H. (2016). Relationship between antibiotic resistance, biofilm formation, and biofilm–specific resistance in acinetobacter baumannii. Front. Microbiol, 7, 483. doi:10.3389/fmicb.2016.00483.

Mulla, S., Kumar, A., Rajdev, S. (2016). Comparison of MIC with MBEC Assay for in Vitro Antimicrobial Susceptibility Testing In Biofilm Forming Clinical Bacterial Isolates. Advances in Microbiology, 6, 73–78. doi:10.4236/aim.2016.62007.

Published

2017-02-10

How to Cite

Kondratiuk, V. P., Kovalchuk, V. P., & Kovalenko, I. M. (2017). ANTIBIOTIC SUSCEPTIBILITY OF BIOFILM PRODUCING MICROORGANISMS ISOLATED FROM GUNSHOT WOUNDS. Infectious Diseases – Infektsiyni Khvoroby, (4), 52–57. https://doi.org/10.11603/1681-2727.2016.4.7214

Issue

Section

Original investigations