PROSPECTS OF USING “HOSPITAL” VACCINES TO INCREASE THE EFFICIENCY OF COMBATING SYNOGNIOUS INFECTION (EXPERIMENTAL STUDIES)

Authors

DOI:

https://doi.org/10.11603/1681-2727.2025.3.15591

Keywords:

Pseudomonas infections, multistrain vaccines, protective properties and vaccine therapy

Abstract

SUMMARY. In the context of rapidly increasing antibiotic resistance among bacterial pathogens, one of the most promising approaches to treating infected and wounded patients with infectious complications is the personalization of vaccine therapy through the use of autovaccine production technologies. An equally important aspect in the fight against Pseudomonas infections is the prevention of patient contamination with nosocomial strains and the prophylaxis of infection foci formation. To determine the feasibility of using multistrain vaccines produced from hospital-derived Pseudomonas aeruginosa strains, inactivated by photodynamic methods, in order to enhance the effectiveness of combating Pseudomonas infections.

Materials and methods. Using a photodynamic inactivation technique developed by our team, samples of multistrain vaccines were produced from five nosocomial P. aeruginosa strains. The production algorithm was analogous to that used in autovaccine manufacturing, as described in our previous publications.The difference lay in the use of five nosocomial P. aeruginosa strains – isolated from two patients, one high-risk individual (a healthcare worker), and two environmental sources within the intensive care unit of a military hospital – instead of a single bacterial culture. The resulting bacterial suspensions were mixed in equal proportions. The protective activity of the vaccines was assessed using 360 white outbred mice challenged with homologous (original) and heterologous P. aeruginosa strains. Therapeutic efficacy was evaluated based on survival rates in experimental and control groups. To assess the protective efficacy of the hospital-derived vaccine made from five freshly isolated nosocomial strains, mice were intraperitoneally vaccinated with 0.5 mL doses twice, at 6–7-day intervals. Fourteen days after the final administration, the animals were infected with the corresponding P. aeruginosa strain at a dose of 3LD50.

Research results. Experimental findings demonstrated statistically significant protective activity of the multistrain hospital-derived vaccine against both homologous and heterologous P. aeruginosa strains (p<0.05). Survival rates among vaccinated animals were 2–3 times higher than those in the unvaccinated control group.Therapeutic administration of the vaccine to clinically ill mice resulted in a significant increase in survival–85.7 % compared to 30 % in untreated animals. Moreover, even when using a hospital-derived vaccine manufactured from heterologous Pseudomonas strains, the effectiveness of vaccine therapy remained high (survival rate – 66.7 %).

Conclusions. The results indicate that the use of photodynamically inactivated multistrain vaccines is a promising strategy for the prevention of nosocomial infections. This approach may contribute to reducing the emergence of multidrug-resistant hospital strains and the incidence of infectious complications in cases of wounds, burns, and trauma, as well as in patients with comorbid conditions. Additionally, it offers preventive potential against ventilator-associated pneumonia. Under certain conditions, such “hospital” vaccines may be employed not only for prophylaxis but also as an effective treatment modality for complications arising from combat-related injuries, antibiotic-resistant infections, and the risk of chronic infection development–thus representing a novel perspective in managing Pseudomonas infections in both wartime and peacetime settings.

Author Biographies

S. A. Derkach, Mechnykov Institute of Microbiology and Immunology of NAMS of Ukraine

PhD, Head of the Laboratory of Anaerobic Infections of the State Institution

N. I. Sklyar, Mechnykov Institute of Microbiology and Immunology of NAMS of Ukraine

PhD, SR, Deputy Director for Scientific Work of the State Institution

A. M. Maryuschenko, Mechnykov Institute of Microbiology and Immunology of NAMS of Ukraine

PhD, Leading Researcher, laboratory of anaerobic infections State Institution

N. M. Kutsay, Mechnykov Institute of Microbiology and Immunology of NAMS of Ukraine

researcher of the Laboratory of Anaerobic Infections of the State Institution

References

Priebe, G. P., & Goldberg, J. B. (2014). Vaccines for Pseudomonas aeruginosa: A long and winding road. Expert Review of Vaccines, 13(4), 507-519. https://doi.org/10.1586/14760584.2014.893195 DOI: https://doi.org/10.1586/14760584.2014.890053

Beloborodov, V. B. (1998). Problema nozokomialnoi infektsii v otdeleniiakh reanimatsii i intensivnoi terapii i rol karbapenemov [The problem of nosocomial infection in intensive care units and the role of carbapenems]. Klinicheskaia Farmakologiia i Terapiia, 2(2), 13-16. [in Russian]

Peng, Y., Bi, J., Shi, J., Li, Y., Ye, X., Chen, X., & Yao, Z. (2014). Multidrug-resistant Pseudomonas aeruginosa infections pose growing threat to health care–associated infection control in the hospitals of Southern China: A case-control surveillance study. American Journal of Infection Control, 42(12), 1308-1311. https://doi.org/10.1016/j.ajic.2014.07.005 DOI: https://doi.org/10.1016/j.ajic.2014.08.006

Fan, N., Hu, Y., Shen, H., & Liu, S. (2020). Compositional and drug-resistance profiling of pathogens in patients with severe acute pancreatitis: A retrospective study. BMC Gastroenterology, 20, Article 405. https://doi.org/10.1186/s12876-020-01563-x DOI: https://doi.org/10.1186/s12876-020-01563-x

Odinets, Yu. V. (2000). Antibakterialnaia terapiia nozokomialnykh infektsii v pediatrii [Antibacterial therapy of nosocomial infections in pediatrics]. Vrachebnaia Praktika, (1), 20-28. [in Russian]

Guideline for prevention of surgical site infection. (1999). Infection Control & Hospital Epidemiology, 20, 247-280. https://doi.org/10.1086/501620 DOI: https://doi.org/10.1086/501620

Donta, S. T., Peduzzi, P., Cross, A. S., Sadoff, J., Haakenson, C., Cryz Jr, S. J., ... & Federal Hyperimmune Immunoglobulin Trial Study Group. (1996). Immunoprophylaxis against Klebsiella and Pseudomonas aeruginosa infections. Journal of Infectious Diseases, 174(3), 537-543. https://doi.org/10.1093/infdis/174.3.537 DOI: https://doi.org/10.1093/infdis/174.3.537

Hatano, K., & Pier, G. B. (1998). Complex serology and immune response of mice to variant high-molecular-weight O polysaccharides isolated from Pseudomonas aeruginosa serogroup O2 strains. Infection and Immunity, 66(8), 3719-3726. https://doi.org/10.1128/iai.66.8.3719-3726.1998 DOI: https://doi.org/10.1128/IAI.66.8.3719-3726.1998

Giedrys-Kalemba, S., Czernomysy-Furowicz, D., Fijałkowski, K., & Jursa-Kulesza, J. (2018). Autovaccines in individual therapy of staphylococcal infections. In Pet-to-man travelling Staphylococci (pp. 253-264). Academic Press. https://doi.org/10.1016/B978-0-12-813547-1.00019-7 DOI: https://doi.org/10.1016/B978-0-12-813547-1.00019-4

Daniel, G. V., Laura, S. V., Jose, B. P., Enrique, C. A., Enrique, C. G., Juan, G. G., & Mateo, P. M. (2014). Autovaccines for chronic urinary tract infections: Ten years follow-up experience. American Journal of Life Sciences, 2(6-3), 13-17. https://doi.org/10.11648/j.ajls.s.2014020603.14

Derkach, S. A., Martynov, A. V., Kutsai, N. M., Horodnytska, N. I., Shevtsova, O. M., Hryniova, H. D., & Hlushchenko, N. V. (2020). Tekhnolohiia otrymannia vaktsyn dlia profilaktyky ta likuvannia pseudomonoziv [Technology for producing vaccines for the prevention and treatment of pseudomonas infections] (State registration number 0621U000025). [Patent or certificate of authorship] [in Ukrainian]

Derkach, S. A., Horodnytska, N. I., Romanova, O. A., & Habysheva, L. S. (2022). Vplyv fotoinaktyvovanoi synohniinoi vaktsyny na adaptyvnyi imunitet (eksperymentalni doslidzhennia) [Effect of photo-inactivated Pseudomonas vaccine on adaptive immunity (experimental studies)]. In Modern directions of scientific research development. Proceedings of the 15th International Scientific and Practical Conference (pp. 37-44). BoScience Publisher. http://sci-conf.com.ua [in Ukrainian]

Derkach, S. A., Martynov, A. V., Horodnytska, N. I., Kutsai, N. M., & Habysheva, L. S. (2021). Protektyvni vlastyvosti rozroblenykh zrazkiv faholizatnoi synohniinoi vaktsyny (eksperymentalni doslidzhennia) [Protective properties of developed phagolysate Pseudomonas vaccine samples (experimental studies)]. Analy Mechnykovskoho Instytutu, (1), 45-49. http://imiamn.org.ua/journal.html [in Ukrainian]

Derkach, S. A., Martynov, A. V., Horodnytska, N. I., Kutsai, N. M., & Skliar, N. I. (2023). Sposib otrymannia autovaktsyny (AV) dlia likuvannia synohniinoi infektsii (SGI) ta profilaktyky nozokomialnykh pseudomonoziv: Medyko-biolohichne novovvedennia [Method of obtaining autovaccine (AV) for treatment of Pseudomonas infection (SGI) and prevention of nosocomial pseudomonas infections: Biomedical innovation]. Informatsiinyi Biuleten. Dodatok do Zhurnalu Akademii Medychnykh Nauk Ukrainy, (55), 40 [in Ukrainian]

Derkach, S. A., Kutsai, N. M., Horodnytska, N. I., & Skliar, N. I. (2023). Protektyvni vlastyvosti zrazkiv synohniinoi autovaktsyny [Protective properties of Pseudomonas autovaccine samples]. Infektsiini Khvoroby, (1), 35-40 [in Ukrainian]

Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., ... & Iwakura, Y. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. The Journal of Immunology, 177(1), 566-573. https://doi.org/10.4049/jimmunol.177.1.566 DOI: https://doi.org/10.4049/jimmunol.177.1.566

Ye, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., ... & Kolls, J. K. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. Journal of Experimental Medicine, 194(4), 519-528. https://doi.org/10.1084/jem.194.4.519 DOI: https://doi.org/10.1084/jem.194.4.519

Mutharia, L. M., Nicas, T. I., & Hancock, R. E. (1982). Outer membrane proteins of Pseudomonas aeruginosa serotype strains. Journal of Infectious Diseases, 146(6), 770-779. https://doi.org/10.1093/infdis/146.6.770 DOI: https://doi.org/10.1093/infdis/146.6.770

Ding, B., von Specht, B. U., & Li, Y. (2010). OprF/I-vaccinated sera inhibit binding of human interferon-gamma to Pseudomonas aeruginosa. Vaccine, 28(25), 4119-4122. https://doi.org/10.1016/j.vaccine.2010.04.011 DOI: https://doi.org/10.1016/j.vaccine.2010.04.028

Wu, L., Estrada, O., Zaborina, O., Bains, M., Shen, L., Kohler, J. E., ... & Alverdy, J. C. (2005). Recognition of host immune activation by Pseudomonas aeruginosa. Science, 309(5735), 774-777. https://doi.org/10.1126/science.1112422 DOI: https://doi.org/10.1126/science.1112422

Published

2025-10-17

How to Cite

Derkach, S. A., Sklyar, N. I., Maryuschenko, A. M., & Kutsay, N. M. (2025). PROSPECTS OF USING “HOSPITAL” VACCINES TO INCREASE THE EFFICIENCY OF COMBATING SYNOGNIOUS INFECTION (EXPERIMENTAL STUDIES). Infectious Diseases – Infektsiyni Khvoroby, (3), 14–21. https://doi.org/10.11603/1681-2727.2025.3.15591

Issue

Section

Original investigations