MORPHOGENESIS OF DIFFUSE ALVEOLAR HEMORRHAGE IN SEVERE INFLUENZA A VIRUS PNEUMONIA

Authors

DOI:

https://doi.org/10.11603/1681-2727.2025.2.15269

Keywords:

influenza A, viral hemorrhagic pneumonia, cytokine storm, diffuse alveolar hemorrhage, diffuse alveolar injury

Abstract

SUMMARY. Over the past hundred years, 12 severe pandemics of viral respiratory infections have occurred on planet Earth. All of them (with the exception of the latest COVID-19 pandemic) were caused by the influenza A virus. It is known that severe influenza A is characterized by an unpredictable course and possible life-threatening complications that develop quite rapidly in time: (acute respiratory distress syndrome, diffuse alveolar hemorrhage/bleeding, acute respiratory failure, infectious toxic shock, cerebral edema, etc.).

Progressive structural and functional damage to the lung parenchyma tissue, which is the main morphological sign of deterioration in patients, and the still limited effectiveness of general methods of treating these complications remain poorly understood and require further study.

The aim of our study was to obtain and analyze information on the pathogenetic/morphogenetic features of lung parenchyma aerosol barrier lesions directly or indirectly associated with severe influenza A viral hemorrhagic pneumonia.

To achieve this goal, we searched the literature in the scientometric databases Web of Science, Google Scholar, Scopus, Science Direct, Clinical Key Elsevier, PubMed, using the following keywords: “influenza A”, “viral hemorrhagic pneumonia”, “cytokine storm”, “diffuse alveolar hemorrhage”, “diffuse alveolar injury”. After processing and analyzing the publications, only professional sources that met the conditions of the request and the purpose of the study were selected for review.

The results of the study have shown that the pathogenetic features of the development of critical conditions in patients with severe influenza A are due to bilateral diffuse hemorrhagic pneumonia. Regardless of which general pathological process (according to the literature – inflammation, bleeding or hemorrhage) underlies the morphogenesis of this critical condition, the dominant and ultimately determining clinical and morphological factor in the severity of this form of influenza A is diffuse hemorrhagic pneumonia with the presence of a massive intra-alveolar hemorrhagic exudate in the lungs. The development of pulmonary diffuse alveolar hemorrhage in influenza virus infection occurs through activation and damage to endothelial cells (ECs) by several mechanisms, including direct injury, loss of tight junctions and capillary hyperpermeability due to inflammatory factors and, ultimately, due to EC apoptosis.

Author Biography

Y. V. Dibrova, Bogomolets National Medical University

Associate Professor of the Department of Pathological Anatomy

References

Андрейчин, М. А., & Копча, В. С. (2009). Проблема грипу А/H1N1 Каліфорнія: минуле і сучасність. Інфекційні хвороби, (4), 5-19. https://doi.org/10.11603/1681-2727.2009.4.826

Андрейчин, М. А., Ничик, Н. А., Завіднюк, Н. Г., & Йосик, Я. І. (2019). Проблема пандемічного грипу А/H1N1. Інфекційні хвороби, (2), 45-57. https://doi.org/10.11603/1681-2727.2019.2.10326 DOI: https://doi.org/10.11603/1681-2727.2019.2.10326

Діброва, Ю. В. (2015). Ретроспективна оцінка епідемії грипу А (H1N1) В Україні з позиції патолога. Лікарська справа, (1-2), 55-58.

Rothberg, M. B., Haessler, S. D., & Brown, R. B. (2008). Complications of viral influenza. The American journal of medicine, 121(4), 258-264. DOI: https://doi.org/10.1016/j.amjmed.2007.10.040

Cao, B. (2009). National Influenza A Pandemic (H1N1) 2009 Clinical Investigation Group of China. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N. Engl. J. Med., 361, 2507-2517. doi: 10.1056/NEJMoa0906612. DOI: https://doi.org/10.1056/NEJMoa0906612

De Prost, N., Parrot, A., Picard, C., Ancel, P. Y., Mayaud, C., Fartoukh, M., & Cadranel, J. (2010). Diffuse alveolar haemorrhage: factors associated with in-hospital and long-term mortality. European Respiratory Journal, 35(6), 1303-1311. DOI: https://doi.org/10.1183/09031936.00075309

Toolsie, O., Tehreem, A., & Diaz-Fuentes, G. (2019). Influenza A pneumonia associated with diffuse alveolar hemorrhage. A case report and literature review. The American Journal of Case Reports, 20, 592. DOI: https://doi.org/10.12659/AJCR.913801

Park, M. S. (2013). Diffuse alveolar hemorrhage. Tuberculosis and respiratory diseases, 74(4), 151. DOI: https://doi.org/10.4046/trd.2013.74.4.151

Collard, H. R., & Schwarz, M. I. (2004). Diffuse alveolar hemorrhage. Clinics in chest medicine, 25(3), 583-592. DOI: https://doi.org/10.1016/j.ccm.2004.04.007

von Ranke, F. M., Zanetti, G., Hochhegger, B., & Marchiori, E. (2013). Infectious diseases causing diffuse alveolar hemorrhage in immunocompetent patients: a state-of-the-art review. Lung, 191, 9-18. DOI: https://doi.org/10.1007/s00408-012-9431-7

Gilbert, C. R., Vipul, K., & Baram, M. (2010). Novel H1N1 influenza A viral infection complicated by alveolar hemorrhage. Respiratory care, 55(5), 623-625.

Mauad, T., Hajjar, L. A., Callegari, G. D., da Silva, L. F., Schout, D., Galas, F. R., ... & Saldiva, P. H. (2010). Lung pathology in fatal novel human influenza A (H1N1) infection. American journal of respiratory and critical care medicine, 181(1), 72-79. DOI: https://doi.org/10.1164/rccm.200909-1420OC

Prasad, H. B., Puranik, S. C., Kadam, D. B., Sangle, S. A., Borse, R. T., Basavraj, A., ... & Mishra, A. C. (2011). Retrospective analysis of necropsy findings in patients of H1N1 and their correlation to clinical features. Journal of the Association of Physicians of India, 59, 498-500.

Magh, A., Tsang, J., Hines, A., & Castaneda, C. (2018). Influenza B-induced inflammatory process leading to diffuse alveolar hemorrhage: a case report. Chest, 154(4), 424A-425A. DOI: https://doi.org/10.1016/j.chest.2018.08.387

Gao, R., Bhatnagar, J., Blau, D. M., Greer, P., Rollin, D. C., Denison, A. M., ... & Zaki, S. R. (2013). Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis. The American journal of pathology, 183(4), 1258-1268. DOI: https://doi.org/10.1016/j.ajpath.2013.06.023

Pang, I. K., Pillai, P. S., & Iwasaki, A. (2013). Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proceedings of the National Academy of Sciences, 110(34), 13910-13915. DOI: https://doi.org/10.1073/pnas.1303275110

Ichinohe, T., Pang, I. K., & Iwasaki, A. (2010). Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature immunology, 11(5), 404-410. DOI: https://doi.org/10.1038/ni.1861

Lupfer, C., Thomas, P. G., Anand, P. K., Vogel, P., Milasta, S., Martinez, J., ... & Kanneganti, T. D. (2013). Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nature immunology, 14(5), 480-488. DOI: https://doi.org/10.1038/ni.2563

McAuley, J. L., Tate, M. D., MacKenzie-Kludas, C. J., Pinar, A., Zeng, W., Stutz, A., ... & Mansell, A. (2013). Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS pathogens, 9(5), e1003392. DOI: https://doi.org/10.1371/journal.ppat.1003392

Iwasaki, A., & Pillai, P. S. (2014). Innate immunity to influenza virus infection. Nature Reviews Immunology, 14(5), 315-328. DOI: https://doi.org/10.1038/nri3665

Brandes, M., Klauschen, F., Kuchen, S., & Germain, R. N. (2013). A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell, 154(1), 197-212. DOI: https://doi.org/10.1016/j.cell.2013.06.013

Armstrong, S. M., Darwish, I., & Lee, W. L. (2013). Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence, 4(6), 537-542. DOI: https://doi.org/10.4161/viru.25779

Antoniak, S., & Mackman, N. (2014). Multiple roles of the coagulation protease cascade during virus infection. Blood, the Journal of the American Society of Hematology, 123(17), 2605-2613. DOI: https://doi.org/10.1182/blood-2013-09-526277

Lê, V. B., Schneider, J. G., Boergeling, Y., Berri, F., Ducatez, M., Guerin, J. L., ... & Riteau, B. (2015). Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. American journal of respiratory and critical care medicine, 191(7), 804-819. DOI: https://doi.org/10.1164/rccm.201406-1031OC

Taubenberger, J. K., & Morens, D. M. (2008). The pathology of influenza virus infections. Annu. Rev. Pathol. Mech. Dis., 3(1), 499-522. DOI: https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316

Rosen, D. G., Lopez, A. E., Anzalone, M. L., Wolf, D. A., Derrick, S. M., Florez, L. F., ... & Sanchez, L. A. (2010). Postmortem findings in eight cases of influenza A/H1N1. Modern Pathology, 23(11), 1449-1457. DOI: https://doi.org/10.1038/modpathol.2010.148

To, K. K. W., Song, W., Lau, S. Y., Que, T. L., Lung, D. C., Hung, I. F. N., ... & Yuen, K. Y. (2014). Unique reassortant of influenza A (H7N9) virus associated with severe disease emerging in Hong Kong. Journal of Infection, 69(1), 60-68. DOI: https://doi.org/10.1016/j.jinf.2014.02.012

Claas, E. C., Osterhaus, A. D., Van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., ... & Webster, R. G. (1998). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet, 351(9101), 472-477. DOI: https://doi.org/10.1016/S0140-6736(97)11212-0

Wiwanitkit, V. (2008). Hemostatic disorders in bird flu infection. Blood coagulation & fibrinolysis, 19(1), 5-6. DOI: https://doi.org/10.1097/MBC.0b013e3282f185a6

Chen, E., Wang, F., Lv, H., Zhang, Y., Ding, H., Liu, S., ... & Xia, S. (2013). The first avian influenza A (H7N9) viral infection in humans in Zhejiang Province, China: a death report. Frontiers of medicine, 7, 333-344. DOI: https://doi.org/10.1007/s11684-013-0275-1

Chen, Y., Liang, W., Yang, S., Wu, N., Gao, H., Sheng, J., ... & Yuen, K. Y. (2013). Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. The Lancet, 381(9881), 1916-1925. DOI: https://doi.org/10.1016/S0140-6736(13)60903-4

Lu, S., Li, T., Xi, X., Chen, Q., Liu, X., Zhang, B., ... & Song, Y. (2014). Prognosis of 18 H7N9 avian influenza patients in Shanghai. PloS one, 9(4), e88728. DOI: https://doi.org/10.1371/journal.pone.0088728

Soto-Abraham, M. V., Soriano-Rosas, J., Díaz-Quiñónez, A., Silva-Pereyra, J., Vazquez-Hernandez, P., Torres-López, O., ... & Navarro-Reynoso, F. (2009). Pathological changes associated with the 2009 H1N1 virus. New England Journal of Medicine, 361(20), 2001-2003. DOI: https://doi.org/10.1056/NEJMc0907171

Harms, P. W., Schmidt, L. A., Smith, L. B., Newton, D. W., Pletneva, M. A., Walters, L. L., ... & Jentzen, J. M. (2010). Autopsy findings in eight patients with fatal H1N1 influenza. American Journal of Clinical Pathology, 134(1), 27-35. DOI: https://doi.org/10.1309/AJCP35KOZSAVNQZW

Marsden, P. A. (2006). Inflammation and coagulation in the cardiovascular system: the contribution of influenza. Circulation research, 99(11), 1152-1153. DOI: https://doi.org/10.1161/01.RES.0000251962.44753.7f

Akiyama, R., Komori, I., Hiramoto, R., Isonishi, A., Matsumoto, M., & Fujimura, Y. (2011). H1N1 influenza (swine flu)-associated thrombotic microangiopathy with a markedly high plasma ratio of von Willebrand factor to ADAMTS13. Internal Medicine, 50(6), 643-647. DOI: https://doi.org/10.2169/internalmedicine.50.4620

Boilard, E., Paré, G., Rousseau, M., Cloutier, N., Dubuc, I., Lévesque, T., ... & Flamand, L. (2014). Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood, The Journal of the American Society of Hematology, 123(18), 2854-2863. DOI: https://doi.org/10.1182/blood-2013-07-515536

Herold, S., Becker, C., Ridge, K. M., & Budinger, G. S. (2015). Influenza virus-induced lung injury: pathogenesis and implications for treatment. European Respiratory Journal, 45(5), 1463-1478. DOI: https://doi.org/10.1183/09031936.00186214

Teijaro, J. R., Walsh, K. B., Cahalan, S., Fremgen, D. M., Roberts, E., Scott, F., ... & Rosen, H. (2011). Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 146(6), 980-991. DOI: https://doi.org/10.1016/j.cell.2011.08.015

Davison, A. M., Thomson, D., & Robson, J. S. (1973). Intravascular coagulation complicating influenza A virus infection. British Medical Journal, 1(5854), 654. DOI: https://doi.org/10.1136/bmj.1.5854.654

Watanabe, T. (2013). Renal complications of seasonal and pandemic influenza A virus infections. European journal of pediatrics, 172, 15-22. DOI: https://doi.org/10.1007/s00431-012-1854-x

Short, K. R., Kroeze, E. J. V., Fouchier, R. A., & Kuiken, T. (2014). Pathogenesis of influenza-induced acute respiratory distress syndrome. The Lancet infectious diseases, 14(1), 57-69. DOI: https://doi.org/10.1016/S1473-3099(13)70286-X

van Hinsbergh, V. W. (2012, January). Endothelium – role in regulation of coagulation and inflammation. In Seminars in immunopathology (Vol. 34, pp. 93-106). Springer-Verlag. DOI: https://doi.org/10.1007/s00281-011-0285-5

Purcell, S. C., & Godula, K. (2019). Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Journal of the Royal Society Interface Focus, 9(2), 20180080. DOI: https://doi.org/10.1098/rsfs.2018.0080

Vallet, B., Wiel, E. (2001). Endothelial cell dysfunction and coagulation. Crit Care Med, 29(7 Suppl), S36-S41. DOI: https://doi.org/10.1097/00003246-200107001-00015

Pober, J. S., & Sessa, W. C. (2007). Evolving functions of endothelial cells in inflammation. Nature Reviews Immunology, 7(10), 803-815. DOI: https://doi.org/10.1038/nri2171

Pate, M., Damarla, V., Chi, D. S., Negi, S., & Krishnaswamy, G. (2010). Endothelial cell biology: role in the inflammatory response. Advances in clinical chemistry, 52, 109-130. DOI: https://doi.org/10.1016/S0065-2423(10)52004-3

Yang, Y., & Tang, H. (2016). Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cellular & molecular immunology, 13(4), 432-442. DOI: https://doi.org/10.1038/cmi.2016.1

Leung, H. S., Li, O. T., Chan, R. W., Chan, M. C., Nicholls, J. M., & Poon, L. L. (2012). Entry of influenza A virus with a α2,6-linked sialic acid binding preference requires host fibronectin. J Virol., 86(19), 10704-10713. DOI: https://doi.org/10.1128/JVI.01166-12

Andersson, U., & Harris, H. E. (2010). The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta (BBA) – Gene Regulatory Mechanisms, 1799(1–2), 141-148. DOI: https://doi.org/10.1016/j.bbagrm.2009.11.003

Imai, Y., Kuba, K., Neely, G. G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., ... & Penninger, J. M. (2008). Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell, 133(2), 235-249. DOI: https://doi.org/10.1016/j.cell.2008.02.043

Tsai, S. Y., Segovia, J. A., Chang, T. H., Morris, I. R., Berton, M. T., Tessier, P. A., ... & Bose, S. (2014). DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS pathogens, 10(1), e1003848. DOI: https://doi.org/10.1371/journal.ppat.1003848

Shibamiya, A., Hersemeyer, K., Schmidt Wöll, T., Sedding, D., Daniel, J. M., Bauer, S., ... & Kanse, S. M. (2009). A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood, The Journal of the American Society of Hematology, 113(3), 714-722. DOI: https://doi.org/10.1182/blood-2008-02-137901

Wang, S., Le, T. Q., Kurihara, N., Chida, J., Cisse, Y., Yano, M., & Kido, H. (2010). Influenza Virus—cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. The Journal of infectious diseases, 202(7), 991-1001. DOI: https://doi.org/10.1086/656044

Pinsky, D. J., Naka, Y., Liao, H., Oz, M. C., Wagner, D. D., Mayadas, T. N., ... & Stern, D. M. (1996). Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. The Journal of clinical investigation, 97(2), 493-500. DOI: https://doi.org/10.1172/JCI118440

Palta, S., Saroa, R., & Palta, A. (2014). Overview of the coagulation system. Indian journal of anaesthesia, 58(5), 515-523. DOI: https://doi.org/10.4103/0019-5049.144643

Visseren, F. L. J., Bouwman, J. J. M., Bouter, K. P., Diepersloot, R. J. A., de Groot, P. G., & Erkelens, D. W. (2000). Procoagulant activity of endothelial cells after infection with respiratory viruses. Thrombosis and haemostasis, 84(08), 319-324. DOI: https://doi.org/10.1055/s-0037-1614014

Goeijenbier, M. V. W. M., Van Wissen, M., Van De Weg, C., Jong, E., Gerdes, V. E. A., Meijers, J. C. M., ... & Van Gorp, E. C. M. (2012). Viral infections and mechanisms of thrombosis and bleeding. Journal of medical virology, 84(10), 1680-1696. DOI: https://doi.org/10.1002/jmv.23354

Walters, K. A., D’Agnillo, F., Sheng, Z. M., Kindrachuk, J., Schwartzman, L. M., Kuestner, R. E., ... & Kash, J. C. (2016). 1918 pandemic influenza virus and Streptococcus pneumoniae co-infection results in activation of coagulation and widespread pulmonary thrombosis in mice and humans. The Journal of pathology, 238(1), 85-97. DOI: https://doi.org/10.1002/path.4638

Published

2025-06-04

How to Cite

Dibrova, Y. V. (2025). MORPHOGENESIS OF DIFFUSE ALVEOLAR HEMORRHAGE IN SEVERE INFLUENZA A VIRUS PNEUMONIA. Infectious Diseases – Infektsiyni Khvoroby, (2), 53–59. https://doi.org/10.11603/1681-2727.2025.2.15269

Issue

Section

Reviews and lectures