METAPNEUMOVIRUS INFECTION IN THE WORLD AND UKRAINE: WHAT IS KNOWN AND ARE THERE RISKS?
(PART 1)
DOI:
https://doi.org/10.11603/1681-2727.2025.1.15151Keywords:
human metapneumovirus, metapneumovirus infection, epidemic process, surveillance, seasonality, bronchiolitis, pneumonia, vaccinesAbstract
Metapneumovirus (HMPV) can affect the lower respiratory tract. During replication, it can spread from cell to cell, which makes it similar to SARS-CoV-2 in terms of these properties. Risk groups are children who are infected with this pathogen for the first time and older adults with an unfavorable premorbid background accompanied by an immunocompromised state. The most frequent manifestations of infection are bronchiolitis and pneumonia.
There is no specific treatment or vaccine. HMPV is characterized by cyclical circulation, the activity of which has been affected by the COVID-19 pandemic, increasing the intensity of the epidemic process after a certain decline in some areas. In Ukraine, for the period 2019/2020 – 2024/2025 (the first 2 weeks), the highest indicators of the frequency of HMPV detection were against the background of the COVID-19 epidemic in 2020/2021 (1.83–4.33 %). In 2021/2022 only 2 cases of HMPV infection were detected. In the next 2 seasons (2022/2023–2023/2024), HMPV was detected within the sentinel surveillance with a frequency of 1.44 and 1.13 %, respectively, but the number of viruses increased from 63 to 106. In 2024/2025 (the first 2 weeks), the increase in the intensity of НMPV circulation was not determined (according to sentinel surveillance data, НMPV was determined in 0.43–1.11 % of the number of hospitalized patients with acute respiratory infections (ARIs). In 2022/2023 and 2023/2024 НMPV circulated throughout the entire epidemic season of ARIs, but with different intensity. In 2020/2021 circulation began in February 2021, and the peak incidence was observed at the end of March–April. In the 2022/2023 season the highest frequency of detection of НMPV was recorded in November–December 2022 with subsequent sporadic cases until the month of May. In the 2023/2024 season most cases were identified in mid-December with a further slight increase in March–April. It should be noted that in 2020/2021 and 2023/2024 sporadic cases were also registered in May, i.e. until the end of the season/observation (20th week). It can be assumed that the circulation of НMPV continued further. In Ukraine, at present, there has been no increase in the frequency of cases of HMPV infection, which would exceed the limits expected during the epidemic season of ARIs. At the same time, cases of НMPV infection are constantly being determined among patients with a severe course of ARIs, which indicates the relevance of this infectious disease for Ukraine. It has been shown that sentinel surveillance is much more informative than routine surveillance in terms of diagnosing HMPV infection, operational assessment of the epidemic situation and trends in the epidemic process. It is necessary to further improve the system of surveillance for ARIs, in particular for HMPV infection, in order to increase the sensitivity of its informational component. At the moment, there is no reason to talk about the emergence of an emergent, i.e. new to humans, metapneumovirus, as well as the acquisition of new properties by the known HMPV. According to the analyzed data of its role in the development of ARIs in the world and in Ukraine, the current situation can be assessed as a seasonal rise in HMPV infection, which may be more pronounced both in general and in certain areas due to the previous impact of the COVID-19 pandemic.
References
Singh, V. HMPV outbreak in China? Amid viral videos and govt ambiguity, know symptoms and precautions (Updated 03 Jan 2025). Wion. Retrieved from: https://www.wionews.com/world/china-facing-hmpv-outbreak-symptoms-and-precautions-8587512.
Human metapneumovirus. Wikipedia, the free encyclopedia. Retrieved from: https://en.wikipedia.org/wiki/Human_metapneumovirus.
Divarathna, M. V. M., Rafeek, R. A. M., & Noordeen, F. (2020). A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Reviews in medical virology, 30(1), e2090. https://doi.org/10.1002/rmv.2090. DOI: https://doi.org/10.1002/rmv.2090
World Health Organization (WHO). Disease Outbreak News. Trends of acute respiratory infection, including human metapneumovirus, in the Northern Hemisphere (7 January 2025). Retrieved from: https://www.who.int/emergencies/disease-outbreak-news/item/2025-DON550.
de Graaf, M., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Holmes, E. C. (2008). Evolutionary dynamics of human and avian metapneumoviruses. The Journal of general virology, 89(Pt 12), 2933–2942. https://doi.org/10.1099/vir.0.2008/006957-0. DOI: https://doi.org/10.1099/vir.0.2008/006957-0
Shafagati, N., & Williams, J. (2018). Human metapneumovirus – what we know now. F1000Research, 7, 135. https://doi.org/10.12688/f1000research.12625.1. DOI: https://doi.org/10.12688/f1000research.12625.1
Uddin, S., & Тhomas, M. Human Metapneumovirus. Treasure Island (FL): StatPearls Publishing; 2025. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK560910/.
Current ICTV Taxonomy Release. Virus Taxonomy: 2023 Release. Retrieved from: https://ictv.global/taxonomy.
Nao, N., Saikusa, M., Sato, K., Sekizuka, T., Usuku, S., Tanaka, N., Nishimura, H., & Takeda, M. (2020). Recent Molecular Evolution of Human Metapneumovirus (HMPV): Subdivision of HMPV A2b Strains. Microorganisms, 8(9), 1280. https://doi.org/10.3390/microorganisms8091280. DOI: https://doi.org/10.3390/microorganisms8091280
Peret, T. C., Boivin, G., Li, Y., Couillard, M., Humphrey, C., Osterhaus, A. D., Erdman, D. D., & Anderson, L. J. (2002). Characterization of human metapneumoviruses isolated from patients in North America. The Journal of infectious diseases, 185(11), 1660–1663. https://doi.org/10.1086/340518. DOI: https://doi.org/10.1086/340518
Hamelin, M. E., Abed, Y., & Boivin, G. (2004). Human metapneumovirus: a new player among respiratory viruses. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 38(7), 983–990. https://doi.org/10.1086/382536. DOI: https://doi.org/10.1086/382536
Leyrat, C., Paesen, G. C., Charleston, J., Renner, M., & Grimes, J. M. (2014). Structural insights into the human metapneumovirus glycoprotein ectodomain. Journal of virology, 88(19), 11611–11616. https://doi.org/10.1128/JVI.01726-14. DOI: https://doi.org/10.1128/JVI.01726-14
Brynes, A., Zhang, Y., & Williams, J. V. (2024). Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. bioRxiv : the preprint server for biology, 2024.05.10.593594. https://doi.org/10.1101/2024.05.10.593594. DOI: https://doi.org/10.1101/2024.05.10.593594
Decool, H., Gonnin, L., Gutsche, I., Sizun, C., Eléouët, J. F., & Galloux, M. (2021). Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses, 13(12), 2449. https://doi.org/10.3390/v13122449 DOI: https://doi.org/10.3390/v13122449
Bao, X., Kolli, D., Liu, T., Shan, Y., Garofalo, R. P., & Casola, A. (2008). Human metapneumovirus small hydrophobic protein inhibits NF-kappaB transcriptional activity. Journal of virology, 82(16), 8224–8229. https://doi.org/10.1128/JVI.02584-07. DOI: https://doi.org/10.1128/JVI.02584-07
Huang, J., Chopra, P., Liu, L., Nagy, T., Murray, J., Tripp, R. A., Boons, G. J., & Mousa, J. J. (2021). Structure, Immunogenicity, and Conformation-Dependent Receptor Binding of the Postfusion Human Metapneumovirus F Protein. Journal of virology, 95(18), e0059321. https://doi.org/10.1128/JVI.00593-21. DOI: https://doi.org/10.1128/JVI.00593-21
Thammawat, S., Sadlon, T. A., Hallsworth, P. G., & Gordon, D. L. (2008). Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. Journal of virology, 82(23), 11767–11774. https://doi.org/10.1128/JVI.01208-08. DOI: https://doi.org/10.1128/JVI.01208-08
Cox, R. G., Livesay, S. B., Johnson, M., Ohi, M. D., & Williams, J. V. (2012). The human metapneumovirus fusion protein mediates entry via an interaction with RGD-binding integrins. Journal of virology, 86(22), 12148–12160. https://doi.org/10.1128/JVI.01133-12. DOI: https://doi.org/10.1128/JVI.01133-12
Más, V., Rodriguez, L., Olmedillas, E., Cano, O., Palomo, C., Terrón, M. C., Luque, D., Melero, J. A., & McLellan, J. S. (2016). Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. PLoS pathogens, 12(9), e1005859. https://doi.org/10.1371/journal.ppat.1005859. DOI: https://doi.org/10.1371/journal.ppat.1005859
Skiadopoulos, M. H., Biacchesi, S., Buchholz, U. J., Amaro-Carambot, E., Surman, S. R., Collins, P. L., & Murphy, B. R. (2006). Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology, 345(2), 492–501. https://doi.org/10.1016/j.virol.2005.10.016. DOI: https://doi.org/10.1016/j.virol.2005.10.016
Bastien, N., Normand, S., Taylor, T., Ward, D., Peret, T. C., Boivin, G., Anderson, L. J., & Li, Y. (2003). Sequence analysis of the N, P, M and F genes of Canadian human metapneumovirus strains. Virus research, 93(1), 51–62. https://doi.org/10.1016/s0168-1702(03)00065-0. DOI: https://doi.org/10.1016/S0168-1702(03)00065-0
Pan, J., Qian, X., Lattmann, S., El Sahili, A., Yeo, T. H., Jia, H., Cressey, T., Ludeke, B., Noton, S., Kalocsay, M., Fearns, R., & Lescar, J. (2020). Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature, 577(7789), 275–279. https://doi.org/10.1038/s41586-019-1759-1. DOI: https://doi.org/10.1038/s41586-019-1759-1
Kinder, J. T., Moncman, C. L., Barrett, C., Jin, H., Kallewaard, N., & Dutch, R. E. (2020). Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. Journal of virology, 94(20), e01068-20. https://doi.org/10.1128/JVI.01068-20. DOI: https://doi.org/10.1128/JVI.01068-20
Sumitomo, K., Morizumi, S., Takahashi, K., Kimura, M., Koda, H., Toyoda, Y., & Shinohara, T. (2021). Human metapneumovirus-associated community-acquired pneumonia in adults during the first wave of COVID-19. Journal of rural medicine : JRM, 16(4), 263–269. https://doi.org/10.2185/jrm.2021-035. DOI: https://doi.org/10.2185/jrm.2021-035
Kolli, D., Gupta, M. R., Sbrana, E., Velayutham, T. S., Chao, H., Casola, A., & Garofalo, R. P. (2014). Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection. American journal of respiratory cell and molecular biology, 51(4), 502–515. https://doi.org/10.1165/rcmb.2013-0414OC. DOI: https://doi.org/10.1165/rcmb.2013-0414OC
Sojati, J., Zhang, Y., & Williams, J. V. (2024). Clinical human metapneumovirus isolates show distinct pathogenesis and inflammatory profiles but similar CD8+ T cell impairment. mSphere, 9(1), e0057023. https://doi.org/10.1128/msphere.00570-23. DOI: https://doi.org/10.1128/msphere.00570-23
Zhang, Y., Pohl, J., Brooks, W. A., & Erdman, D. D. (2015). Serologic cross-reactions between nucleocapsid proteins of human respiratory syncytial virus and human metapneumovirus. Journal of clinical microbiology, 53(5), 1609–1615. https://doi.org/10.1128/JCM.03649-14. DOI: https://doi.org/10.1128/JCM.03649-14
Xu, J., Zhang, Y., & Williams, J. V. (2018). Development and optimization of a direct plaque assay for trypsin-dependent human metapneumovirus strains. Journal of virological methods, 259, 1–9. https://doi.org/10.1016/j.jviromet.2018.05.012. DOI: https://doi.org/10.1016/j.jviromet.2018.05.012
Tollefson, S. J., Cox, R. G., & Williams, J. V. (2010). Studies of culture conditions and environmental stability of human metapneumovirus. Virus research, 151(1), 54–59. https://doi.org/10.1016/j.virusres.2010.03.018. DOI: https://doi.org/10.1016/j.virusres.2010.03.018
Nao, N., Sato, K., Yamagishi, J., Tahara, M., Nakatsu, Y., Seki, F., Katoh, H., Ohnuma, A., Shirogane, Y., Hayashi, M., Suzuki, T., Kikuta, H., Nishimura, H., & Takeda, M. (2019). Consensus and variations in cell line specificity among human metapneumovirus strains. PloS one, 14(4), e0215822. https://doi.org/10.1371/journal.pone.0215822. DOI: https://doi.org/10.1371/journal.pone.0215822
Sato, K., Watanabe, O., Ohmiya, S., Chiba, F., Suzuki, A., Okamoto, M., Younghuang, J., Hata, A., Nonaka, H., Kitaoka, S., Nagai, Y., Kawamura, K., Hayashi, M., Kumaki, S., Suzuki, T., Kawakami, K., & Nishimura, H. (2017). Efficient isolation of human metapneumovirus using MNT-1, a human malignant melanoma cell line with early and distinct cytopathic effects. Microbiology and immunology, 61(11), 497–506. https://doi.org/10.1111/1348-0421.12542. DOI: https://doi.org/10.1111/1348-0421.12542
Coswig, L. T., dos Santos, M. B., Hafez, H. M., Ferreira, H. L., & Arns, C. W. (2010). Propagation of avian metapneumovirus subtypes A and B using chicken embryo related and other cell systems. Journal of virological methods, 167(1), 1–4. https://doi.org/10.1016/j.jviromet.2010.02.018. DOI: https://doi.org/10.1016/j.jviromet.2010.02.018
Choi, E. J., Wu, W., Chen, Y., Yan, W., Li, L., Choudhury, A., & Bao, X. (2020). The role of M2-2 PDZ-binding motifs in pulmonary innate immune responses to human metapneumovirus. Journal of medical virology, 92(12), 2946–2954. https://doi.org/10.1002/jmv.25713. DOI: https://doi.org/10.1002/jmv.25713
Gálvez, N. M. S., Andrade, C. A., Pacheco, G. A., Soto, J. A., Stranger, V., Rivera, T., Vásquez, A. E., & Kalergis, A. M. (2021). Host Components That Modulate the Disease Caused by hMPV. Viruses, 13(3), 519. https://doi.org/10.3390/v13030519. DOI: https://doi.org/10.3390/v13030519
González, A. E., Lay, M. K., Jara, E. L., Espinoza, J. A., Gómez, R. S., Soto, J., Rivera, C. A., Abarca, K., Bueno, S. M., Riedel, C. A., & Kalergis, A. M. (2017). Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence, 8(6), 685–704. https://doi.org/10.1080/21505594.2016.1265725. DOI: https://doi.org/10.1080/21505594.2016.1265725
Soto, J. A., Gálvez, N. M. S., Benavente, F. M., Pizarro-Ortega, M. S., Lay, M. K., Riedel, C., Bueno, S. M., Gonzalez, P. A., & Kalergis, A. M. (2018). Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Frontiers in immunology, 9, 2466. https://doi.org/10.3389/fimmu.2018.02466. DOI: https://doi.org/10.3389/fimmu.2018.02466
Ballegeer, M., & Saelens, X. (2020). Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses, 12(5), 542. https://doi.org/10.3390/v12050542. DOI: https://doi.org/10.3390/v12050542
Sepúlveda-Alfaro, J., Catalán, E. A., Vallejos, O. P., Ramos-Tapia, I., Madrid-Muñoz, C., Mendoza-León, M. J., Suazo, I. D., Rivera-Asin, E., Silva, P. H., Alvarez-Mardones, O., Castillo-Godoy, D. P., Riedel, C. A., Schinnerling, K., Ugalde, J. A., Soto, J. A., Bueno, S. M., Kalergis, A. M., & Melo-Gonzalez, F. (2024). Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Frontiers in immunology, 15, 1330209. https://doi.org/10.3389/fimmu.2024.1330209. DOI: https://doi.org/10.3389/fimmu.2024.1330209
Rush, S. A., Brar, G., Hsieh, C. L., Chautard, E., Rainho-Tomko, J. N., Slade, C. D., Bricault, C. A., Kume, A., Kearns, J., Groppo, R., Mundle, S. T., Zhang, L., Casimiro, D., Fu, T. M., DiNapoli, J. M., & McLellan, J. S. (2022). Characterization of prefusion-F-specific antibodies elicited by natural infection with human metapneumovirus. Cell reports, 40(12), 111399. https://doi.org/10.1016/j.celrep.2022.111399. DOI: https://doi.org/10.1016/j.celrep.2022.111399
Falsey, A. R., Walsh, E. E., Osborne, R. H., Vandendijck, Y., Ren, X., Witek, J., Kang, D., Chan, E., Scott, J., & Ispas, G. (2022). Comparative assessment of reported symptoms of influenza, respiratory syncytial virus, and human metapneumovirus infection during hospitalization and post-discharge assessed by Respiratory Intensity and Impact Questionnaire. Influenza and other respiratory viruses, 16(1), 79–89. https://doi.org/10.1111/irv.12903. DOI: https://doi.org/10.1111/irv.12903
von Linstow, M. L., Eugen-Olsen, J., Koch, A., Winther, T. N., Westh, H., & Hogh, B. (2006). Excretion patterns of human metapneumovirus and respiratory syncytial virus among young children. European journal of medical research, 11(8), 329–335.
Kunz, A. N., Englund, J. A., Kuypers, J., Maranich, A., & Fairchok, M. P. (2008). Detection of multiple respiratory viruses by real-time polymerase chain reaction in infants attending an outpatient clinic. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 27(12), 1245–1248. https://doi.org/10.1007/s10096-008-0558-7. DOI: https://doi.org/10.1007/s10096-008-0558-7
Inagaki, A., Kitano, T., Nishikawa, H., Suzuki, R., Onaka, M., Nishiyama, A., Kitagawa, D., Oka, M., Masuo, K., & Yoshida, S. (2021). The Epidemiology of Admission-Requiring Pediatric Respiratory Infections in a Japanese Community Hospital Using Multiplex PCR. Japanese journal of infectious diseases, 74(1), 23–28. https://doi.org/10.7883/yoken.JJID.2020.154. DOI: https://doi.org/10.7883/yoken.JJID.2020.154
Wang, D., Chen, L., Ding, Y., Zhang, J., Hua, J., Geng, Q., Ya, X., Zeng, S., Wu, J., Jiang, Y., Zhang, T., & Zhao, G. (2016). Viral etiology of medically attended influenza-like illnesses in children less than five years old in Suzhou, China, 2011-2014. Journal of medical virology, 88(8), 1334–1340. https://doi.org/10.1002/jmv.24480 DOI: https://doi.org/10.1002/jmv.24480
Finianos, M., Issa, R., Curran, M. D., Afif, C., Rajab, M., Irani, J., Hakimeh, N., Naous, A., Hajj, M. J., Hajj, P., El Jisr, T., & El Chaar, M. (2016). Etiology, seasonality, and clinical characterization of viral respiratory infections among hospitalized children in Beirut, Lebanon. Journal of medical virology, 88(11), 1874–1881. https://doi.org/10.1002/jmv.24544. DOI: https://doi.org/10.1002/jmv.24544
Miyakawa, R., Zhang, H., Brooks, W. A., Prosperi, C., Baggett, H. C., Feikin, D. R., Hammitt, L. L., Howie, S. R. C., Kotloff, K. L., Levine, O. S., Madhi, S. A., Murdoch, D. R., O’Brien, K. L., Scott, J. A. G., Thea, D. M., Antonio, M., Awori, J. O., Bunthi, C., Driscoll, A. J., Ebruke, B., … Deloria Knoll, M. (2024). Epidemiology of human metapneumovirus among children with severe or very severe pneumonia in high pneumonia burden settings: The Pneumonia Etiology Research for Child Health (PERCH) study experience. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, S1198-743X(24)00505-6. Advance online publication. https://doi.org/10.1016/j.cmi.2024.10.023. DOI: https://doi.org/10.1016/j.cmi.2024.10.023
Kahn J. S. (2003). Human metapneumovirus: a newly emerging respiratory pathogen. Current opinion in infectious diseases, 16(3), 255–258. https://doi.org/10.1097/00001432-200306000-00012. DOI: https://doi.org/10.1097/00001432-200306000-00012
Williams, J. V., Wang, C. K., Yang, C. F., Tollefson, S. J., House, F. S., Heck, J. M., Chu, M., Brown, J. B., Lintao, L. D., Quinto, J. D., Chu, D., Spaete, R. R., Edwards, K. M., Wright, P. F., & Crowe, J. E., Jr (2006). The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. The Journal of infectious diseases, 193(3), 387–395. https://doi.org/10.1086/499274. DOI: https://doi.org/10.1086/499274
Boivin, G., Abed, Y., Pelletier, G., Ruel, L., Moisan, D., Côté, S., Peret, T. C., Erdman, D. D., & Anderson, L. J. (2002). Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. The Journal of infectious diseases, 186(9), 1330-1334. https://doi.org/10.1086/344319. DOI: https://doi.org/10.1086/344319
Walsh, E. E., Peterson, D. R., & Falsey, A. R. (2008). Human metapneumovirus infections in adults: another piece of the puzzle. Archives of internal medicine, 168(22), 2489–2496. https://doi.org/10.1001/archinte.168.22.2489. DOI: https://doi.org/10.1001/archinte.168.22.2489
von Linstow, M. L., Larsen, H. H., Eugen-Olsen, J., Koch, A., Nordmann Winther, T., Meyer, A. M., Westh, H., Lundgren, B., Melbye, M., & Høgh, B. (2004). Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection. Scandinavian journal of infectious diseases, 36(8), 578–584. https://doi.org/10.1080/00365540410018166. DOI: https://doi.org/10.1080/00365540410018166
Reiche, J., Jacobsen, S., Neubauer, K., Hafemann, S., Nitsche, A., Milde, J., Wolff, T., & Schweiger, B. (2014). Human metapneumovirus: insights from a ten-year molecular and epidemiological analysis in Germany. PloS one, 9(2), e88342. https://doi.org/10.1371/journal.pone.0088342. DOI: https://doi.org/10.1371/journal.pone.0088342
Aberle, S. W., Aberle, J. H., Sandhofer, M. J., Pracher, E., & Popow-Kraupp, T. (2008). Biennial spring activity of human metapneumovirus in Austria. The Pediatric infectious disease journal, 27(12), 1065–1068. https://doi.org/10.1097/INF.0b013e31817ef4fd. DOI: https://doi.org/10.1097/INF.0b013e31817ef4fd
Samransamruajkit, R., Thanasugarn, W., Prapphal, N., Theamboonlers, A., & Poovorawan, Y. (2006). Human metapneumovirus in infants and young children in Thailand with lower respiratory tract infections; molecular characteristics and clinical presentations. The Journal of infection, 52(4), 254–263. https://doi.org/10.1016/j.jinf.2005.07.001. DOI: https://doi.org/10.1016/j.jinf.2005.07.001
Manoha, C., Espinosa, S., Aho, S. L., Huet, F., & Pothier, P. (2007). Epidemiological and clinical features of hMPV, RSV and RVs infections in young children. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, 38(3), 221–226. https://doi.org/10.1016/j.jcv.2006.12.005. DOI: https://doi.org/10.1016/j.jcv.2006.12.005
Zappa, A., Canuti, M., Frati, E., Pariani, E., Perin, S., Ruzza, M. L., Farina, C., Podestà, A., Zanetti, A., Amendola, A., & Tanzi, E. (2011). Co-circulation of genetically distinct human metapneumovirus and human bocavirus strains in young children with respiratory tract infections in Italy. Journal of medical virology, 83(1), 156–164. https://doi.org/10.1002/jmv.21940. DOI: https://doi.org/10.1002/jmv.21940
Foulongne, V., Guyon, G., Rodière, M., & Segondy, M. (2006). Human metapneumovirus infection in young children hospitalized with respiratory tract disease. The Pediatric infectious disease journal, 25(4), 354–359. https://doi.org/10.1097/01.inf.0000207480.55201.f6. DOI: https://doi.org/10.1097/01.inf.0000207480.55201.f6
Caracciolo, S., Minini, C., Colombrita, D., Rossi, D., Miglietti, N., Vettore, E., Caruso, A., & Fiorentini, S. (2008). Human metapneumovirus infection in young children hospitalized with acute respiratory tract disease: virologic and clinical features. The Pediatric infectious disease journal, 27(5), 406–412. https://doi.org/10.1097/INF.0b013e318162a164. DOI: https://doi.org/10.1097/INF.0b013e318162a164
Ljubin-Sternak, S., Santak, M., Cepin-Bogović, J., Baće, A., Vojnović, G., Mlinarić-Galinović, G., Forcić, D., Drazenović, V., & Falsey, A. R. (2008). Detection of genetic lineages of human metapneumovirus in Croatia during the winter season 2005/2006. Journal of medical virology, 80(7), 1282–1287. https://doi.org/10.1002/jmv.21196. DOI: https://doi.org/10.1002/jmv.21196
Wei, H. Y., Tsao, K. C., Huang, C. G., Huang, Y. C., & Lin, T. Y. (2013). Clinical features of different genotypes/genogroups of human metapneumovirus in hospitalized children. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 46(5), 352–357. https://doi.org/10.1016/j.jmii.2012.07.007. DOI: https://doi.org/10.1016/j.jmii.2012.07.007
Xiao, N. G., Xie, Z. P., Zhang, B., Yuan, X. H., Song, J. R., Gao, H. C., Zhang, R. F., Hou, Y. D., & Duan, Z. J. (2010). Prevalence and clinical and molecular characterization of human metapneumovirus in children with acute respiratory infection in China. The Pediatric infectious disease journal, 29(2), 131–134. https://doi.org/10.1097/inf.0b013e3181b56009. DOI: https://doi.org/10.1097/INF.0b013e3181b56009
Moe, N., Krokstad, S., Stenseng, I. H., Christensen, A., Skanke, L. H., Risnes, K. R., Nordbø, S. A., & Døllner, H. (2017). Comparing human metapneumovirus and respiratory syncytial virus: Viral co-detections, genotypes and risk factors for severe disease. PloS one, 12(1), e0170200. https://doi.org/10.1371/journal.pone.0170200. DOI: https://doi.org/10.1371/journal.pone.0170200
Qaisy, L. M., Meqdam, M. M., Alkhateeb, A., Al-Shorman, A., Al-Rousan, H. O., & Al-Mogbel, M. S. (2012). Human metapneumovirus in Jordan: prevalence and clinical symptoms in hospitalized pediatric patients and molecular virus characterization. Diagnostic microbiology and infectious disease, 74(3), 288–291. https://doi.org/10.1016/j.diagmicrobio.2012.07.004. DOI: https://doi.org/10.1016/j.diagmicrobio.2012.07.004
Zeng, S. Z., Xiao, N. G., Zhong, L. L., Yu, T., Zhang, B., & Duan, Z. J. (2015). Clinical features of human metapneumovirus genotypes in children with acute lower respiratory tract infection in Changsha, China. Journal of medical virology, 87(11), 1839–1845. https://doi.org/10.1002/jmv.24249. DOI: https://doi.org/10.1002/jmv.24249
Owor, B. E., Masankwa, G. N., Mwango, L. C., Njeru, R. W., Agoti, C. N., & Nokes, D. J. (2016). Human metapneumovirus epidemiological and evolutionary patterns in Coastal Kenya, 2007-11. BMC infectious diseases, 16, 301. https://doi.org/10.1186/s12879-016-1605-0. DOI: https://doi.org/10.1186/s12879-016-1605-0
Oketch, J. W., Kamau, E., Otieno, G. P., Otieno, J. R., Agoti, C. N., & Nokes, D. J. (2019). Human metapneumovirus prevalence and patterns of subgroup persistence identified through surveillance of pediatric pneumonia hospital admissions in coastal Kenya, 2007-2016. BMC infectious diseases, 19(1), 757. https://doi.org/10.1186/s12879-019-4381-9. DOI: https://doi.org/10.1186/s12879-019-4381-9
Pilger, D. A., Cantarelli, V. V., Amantea, S. L., & Leistner-Segal, S. (2011). Detection of human bocavirus and human metapneumovirus by real-time PCR from patients with respiratory symptoms in Southern Brazil. Memorias do Instituto Oswaldo Cruz, 106(1), 56–60. https://doi.org/10.1590/s0074-02762011000100009. DOI: https://doi.org/10.1590/S0074-02762011000100009
Yoshida, L. M., Suzuki, M., Yamamoto, T., Nguyen, H. A., Nguyen, C. D., Nguyen, A. T., Oishi, K., Vu, T. D., Le, T. H., Le, M. Q., Yanai, H., Kilgore, P. E., Dang, D. A., & Ariyoshi, K. (2010). Viral pathogens associated with acute respiratory infections in central Vietnamese children. The Pediatric infectious disease journal, 29(1), 75–77. https://doi.org/10.1097/INF.0b013e3181af61e9. DOI: https://doi.org/10.1097/INF.0b013e3181af61e9
McCracken, J. P., Arvelo, W., Ortíz, J., Reyes, L., Gray, J., Estevez, A., Castañeda, O., Langley, G., & Lindblade, K. A. (2014). Comparative epidemiology of human metapneumovirus- and respiratory syncytial virus-associated hospitalizations in Guatemala. Influenza and other respiratory viruses, 8(4), 414–421. https://doi.org/10.1111/irv.12251. DOI: https://doi.org/10.1111/irv.12251
Zhang, C., Du, L. N., Zhang, Z. Y., Qin, X., Yang, X., Liu, P., Chen, X., Zhao, Y., Liu, E. M., & Zhao, X. D. (2012). Detection and genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in Southwest China. Journal of clinical microbiology, 50(8), 2714–2719. https://doi.org/10.1128/JCM.00809-12. DOI: https://doi.org/10.1128/JCM.00809-12
Guido, M., Quattrocchi, M., Campa, A., Zizza, A., Grima, P., Romano, A., & De Donno, A. (2011). Human metapneumovirus and human bocavirus associated with respiratory infection in Apulian population. Virology, 417(1), 64–70. https://doi.org/10.1016/j.virol.2011.04.016. DOI: https://doi.org/10.1016/j.virol.2011.04.016
Widmer, K., Griffin, M. R., Zhu, Y., Williams, J. V., & Talbot, H. K. (2014). Respiratory syncytial virus- and human metapneumovirus-associated emergency department and hospital burden in adults. Influenza and other respiratory viruses, 8(3), 347–352. https://doi.org/10.1111/irv.12234. DOI: https://doi.org/10.1111/irv.12234
Cui, A., Xie, Z., Xu, J., Hu, K., Zhu, R., Li, Z., Li, Y., Sun, L., Xiang, X., Xu, B., Zhang, R., Gao, Z., Zhang, Y., & Xu, W. (2022). Comparative analysis of the clinical and epidemiological characteristics of human influenza virus versus human respiratory syncytial virus versus human metapneumovirus infection in nine provinces of China during 2009-2021. Journal of medical virology, 94(12), 5894–5903. https://doi.org/10.1002/jmv.28073. DOI: https://doi.org/10.1002/jmv.28073
Narayanan, H., Sankar, S., Simoes, E. A., Nandagopal, B., & Sridharan, G. (2013). Molecular detection of human metapneumovirus and human bocavirus on oropharyngeal swabs collected from young children with acute respiratory tract infections from rural and peri-urban communities in South India. Molecular diagnosis & therapy, 17(2), 107–115. https://doi.org/10.1007/s40291-013-0030-y. DOI: https://doi.org/10.1007/s40291-013-0030-y
Ljubin-Sternak, S., Marijan, T., Ivković-Jureković, I., Čepin-Bogović, J., Gagro, A., & Vraneš, J. (2016). Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons. Journal of pathogens, 2016, 2168780. https://doi.org/10.1155/2016/2168780. DOI: https://doi.org/10.1155/2016/2168780
Choi, S. H., Hong, S. B., Huh, J. W., Jung, J., Kim, M. J., Chong, Y. P., Kim, S. H., Sung, H., Koo, H. J., Do, K. H., Lee, S. O., Lim, C. M., Kim, Y. S., Woo, J. H., & Koh, Y. (2019). Outcomes of severe human metapneumovirus-associated community-acquired pneumonia in adults. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, 117, 1–4. https://doi.org/10.1016/j.jcv.2019.05.007. DOI: https://doi.org/10.1016/j.jcv.2019.05.007
Zhou, J. Y., Peng, Y., Peng, X. Y., Gao, H. C., Sun, Y. P., Xie, L. Y., Zhong, L. L., Duan, Z. J., Xie, Z. P., & Cao, Y. D. (2018). Human bocavirus and human metapneumovirus in hospitalized children with lower respiratory tract illness in Changsha, China. Influenza and other respiratory viruses, 12(2), 279–286. https://doi.org/10.1111/irv.12535. DOI: https://doi.org/10.1111/irv.12535
Rodriguez, P. E., Frutos, M. C., Adamo, M. P., Cuffini, C., Cámara, J. A., Paglini, M. G., Moreno, L., & Cámara, A. (2020). Human Metapneumovirus: Epidemiology and genotype diversity in children and adult patients with respiratory infection in Córdoba, Argentina. PloS one, 15(12), e0244093. https://doi.org/10.1371/journal.pone.0244093. DOI: https://doi.org/10.1371/journal.pone.0244093
Bayrakdar, F., Altaş, A. B., & Korukluoğlu, G. (2016). İki ardışık epidemik sezonda ülkemizde dolaşımda olan insan metapnömovirus suşlarının filogenetik çeşitliliği [Phylogenetic variability of human metapneumovirus strains circulating in Turkey during two consecutive epidemic seasons]. Mikrobiyoloji bulteni, 50(1), 63–72. https://doi.org/10.5578/mb.10060. DOI: https://doi.org/10.5578/mb.10060
Jallow, M. M., Fall, A., Kiori, D., Sy, S., Goudiaby, D., Barry, M. A., Fall, M., Niang, M. N., & Dia, N. (2019). Epidemiological, clinical and genotypic features of human Metapneumovirus in patients with influenza-like illness in Senegal, 2012 to 2016. BMC infectious diseases, 19(1), 457. https://doi.org/10.1186/s12879-019-4096-y. DOI: https://doi.org/10.1186/s12879-019-4096-y
Loubet, P., Mathieu, P., Lenzi, N., Galtier, F., Lainé, F., Lesieur, Z., Vanhems, P., Duval, X., Postil, D., Amour, S., Rogez, S., Lagathu, G., L’Honneur, A. S., Foulongne, V., Houhou, N., Lina, B., Carrat, F., Launay, O., & Fluvac study group (2021). Characteristics of human metapneumovirus infection in adults hospitalized for community-acquired influenza-like illness in France, 2012-2018: a retrospective observational study. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(1), 127.e1–127.e6. https://doi.org/10.1016/j.cmi.2020.04.005. DOI: https://doi.org/10.1016/j.cmi.2020.04.005
Ademhan Tural, D., Yalcin, E., Emiralioglu, N., Ozsezen, B., Alp, A., Sunman, B., Gozmen, O., Dogru, D., Ozcelik, U., & Kiper, N. Human bocavirus and human metapneumovirus in children with lower respiratory tract infections: Effects on clinical, microbiological features and disease severity (2022). Pediatric International, 64(1):e15102. https://doi.org/10.1111/ped.15102. DOI: https://doi.org/10.1111/ped.15102
Debes, S., Haug, J. B., de Blasio, B. F., Jonassen, C. M., & Dudman, S. G. (2021). Etiology of viral respiratory tract infections in hospitalized adults, and evidence of the high frequency of prehospitalization antibiotic treatment in Norway. Health science reports, 4(4), e403. https://doi.org/10.1002/hsr2.403. DOI: https://doi.org/10.1002/hsr2.403
Civljak, R., Tot, T., Falsey, A. R., Huljev, E., Vranes, J., & Ljubin-Sternak, S. (2019). Viral pathogens associated with acute respiratory illness in hospitalized adults and elderly from Zagreb, Croatia, 2016 to 2018. Journal of medical virology, 91(7), 1202–1209. https://doi.org/10.1002/jmv.25437. DOI: https://doi.org/10.1002/jmv.25437
Pragathi, P., Shetty, U., Parida, P., Varamballi, P., Mukhopadhyay, C., & N, S. (2024). Molecular detection and genotyping of HMPV in patients with severe acute respiratory infection in India. Annals of medicine, 56(1), 2398719. https://doi.org/10.1080/07853890.2024.2398719. DOI: https://doi.org/10.1080/07853890.2024.2398719
Ji, L., Chen, L., Xu, D., & Wu, X. (2021). Molecular typing and epidemiologic profiles of human metapneumovirus infection among children with severe acute respiratory infection in Huzhou, China. Molecular biology reports, 48(12), 7697–7702. https://doi.org/10.1007/s11033-021-06776-1. DOI: https://doi.org/10.1007/s11033-021-06776-1
Wang, C., Wei, T., Ma, F., Wang, H., Guo, J., Chen, A., Huang, Y., Xie, Z., & Zheng, L. (2021). Epidemiology and genotypic diversity of human metapneumovirus in paediatric patients with acute respiratory infection in Beijing, China. Virology journal, 18(1), 40. https://doi.org/10.1186/s12985-021-01508-0. DOI: https://doi.org/10.1186/s12985-021-01508-0
Wei, T., Wang, C., Ma, F., Guo, J., Chen, A., Huang, Y., Xie, Z., & Zheng, L. (2023). Whole genome sequencing and evolution analyses of Human metapneumovirus. Virus genes, 59(4), 524–531. https://doi.org/10.1007/s11262-023-02001-2. DOI: https://doi.org/10.1007/s11262-023-02001-2
Cong, S., Wang, C., Wei, T., Xie, Z., Huang, Y., Tan, J., Chen, A., Ma, F., & Zheng, L. (2022). Human metapneumovirus in hospitalized children with acute respiratory tract infections in Beijing, China. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 106, 105386. https://doi.org/10.1016/j.meegid.2022.105386. DOI: https://doi.org/10.1016/j.meegid.2022.105386
Sarna, M., Le, H., Taye, B. W., Glass, K., Levy, A., Richmond, P., & Moore, H. C. (2024). Clinical outcomes and severity of laboratory-confirmed RSV compared with influenza, parainfluenza and human metapneumovirus in Australian children attending secondary care. BMJ open respiratory research, 11(1), e002613. https://doi.org/10.1136/bmjresp-2024-002613. DOI: https://doi.org/10.1136/bmjresp-2024-002613
Nam, E. J., Kim, D. J., Ham, J. Y., Song, K. E., & Lee, N. Y. (2023). Recent Changes in the Human Metapneumovirus Outbreak at a University Hospital in Korea. Clinical laboratory, 69(8), 10.7754/Clin.Lab.2023.230216. https://doi.org/10.7754/Clin.Lab.2023.230216. DOI: https://doi.org/10.7754/Clin.Lab.2023.230216
Kuang, L., Xu, T., Wang, C., Xie, J., Zhang, Y., Guo, M., Liang, Z., & Zhu, B. (2024). Changes in the epidemiological patterns of respiratory syncytial virus and human metapneumovirus infection among pediatric patients and their correlation with severe cases: a long-term retrospective study. Frontiers in cellular and infection microbiology, 14, 1435294. https://doi.org/10.3389/fcimb.2024.1435294. DOI: https://doi.org/10.3389/fcimb.2024.1435294
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 В. І. Задорожна, Н. П. Винник, Т. А. Сергеєва

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0