ETIOLOGYCAL, EPIDEMIOLOGICAL AND CLINICAL ASPECTS OF WEST NILE FEVER
DOI:
https://doi.org/10.11603/1681-2727.2024.4.15008Keywords:
West Nile virus, molecular biology, West Nile fever, epidemiological features, clinical manifestations, diagnosis, treatmentAbstract
West Nile virus (WNV) primarily infects mosquitoes, birds, horses, and humans. This pathogen can cause asymptomatic infection or disease with various clinical manifestations - from mild fever to fatal neuroinvasive forms of the disease. Recently, the frequency and severity of diseases caused by WNV have increased in the European Union and neighboring countries, especially in the Mediterranean region. This trend is probably related to the increase in both the average air temperature and the amount of precipitation, which are favorable for the spread of WNV. Due to the marked and increasing geographical distribution of the vector and the high endemic potential of WNV, it is of increasing public health concern.
The clinical spectrum of symptomatic West Nile fever (WNF) in humans is wide. About 80 % of people are asymptomatic, 20 % develop a nonspecific febrile illness that can range in severity from mild to severe, while a small group of patients (<1 %) develop potentially fatal neuroinvasive disease. Recovery from WNF can be slow, and the mortality rate is as high as 10 %, although it depends on the age and immune status of patients.
The fact that there is currently no vaccine or specific antiviral agents for the treatment of such patients is particularly worrying.
References
Habarugira, G., Suen, W.W., Hobson-Peters, J., Hall, R.A., & Bielefeldt-Ohmann, H. (2020). West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens, 9(7), 589.
Sejvar, J.J. (2003). West Nile virus: an historical overview. Ochsner Journal, 5(3), 6-10.
Goldblum, N., Sterk, V.V., & Paderski, B. (1954). West Nile fever: The clinical features of the disease and the isolation of West Nile virus from the blood of nine human cases. American Journal of Epidemiology, 59(1), 89-103. DOI: https://doi.org/10.1093/oxfordjournals.aje.a119626
Heidecke, J., Lavarello Schettini, A., & Rocklöv, J. (2023). West Nile virus eco-epidemiology and climate change. PLOS Climate, 2(5), e0000129.
Huston, N.C., Tsao, L.H., Brackney, D.E., & Pyle, A.M. (2024). The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proceedings of the National Academy of Sciences, 121(29), e2312080121.
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1).
Terrell, J.R., Le, T.T., Paul, A., Brinton, M.A., Wilson, W.D., Poon, G.M., ... & Siemer, J.L. (2024). Structure of an RNA G-quadruplex from the West Nile virus genome. Nature Communications, 15(1), 5428. DOI: https://doi.org/10.1038/s41467-024-49761-5
Ramos-Lorente, S.E., Berzal-Herranz, B., Romero-López, C., & Berzal-Herranz, A. (2024). Recruitment of the 40S ribosomal subunit by the West Nile virus 3′ UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Research, 343, 199340.
Sarkar, S., & Armitage, B.A. (2021). Targeting a potential G-quadruplex forming sequence found in the West Nile virus genome by complementary gamma-peptide nucleic acid oligomers. ACS Infectious Diseases, 7(6), 1445-1456. DOI: https://doi.org/10.1021/acsinfecdis.0c00793
Ahlers, L.R., & Goodman, A.G. (2018). The immune responses of the animal hosts of West Nile virus: a comparison of insects, birds, and mammals. Frontiers in cellular and infection microbiology, 8, 96. DOI: https://doi.org/10.3389/fcimb.2018.00096
Huston, N.C., Tsao, L.H., Brackney, D.E., & Pyle, A.M. (2024). The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proceedings of the National Academy of Sciences, 121(29), e2312080121. DOI: https://doi.org/10.1073/pnas.2312080121
Habarugira, G., Suen, W.W., Hobson-Peters, J., Hall, R.A., & Bielefeldt-Ohmann, H. (2020). West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens, 9(7), 589. DOI: https://doi.org/10.3390/pathogens9070589
Wang, H.R., Liu, T., Gao, X., Wang, H.B., & Xiao, J.H. (2024). Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review. Infectious Diseases of Poverty, 13(1), 38. DOI: https://doi.org/10.1186/s40249-024-01207-2
Heidecke, J., Lavarello Schettini, A., & Rocklöv, J. (2023). West Nile virus eco-epidemiology and climate change. PLOS Climate, 2(5), e0000129. DOI: https://doi.org/10.1371/journal.pclm.0000129
Ayers, V.B., Huang, Y.J.S., Lyons, A.C., Park, S.L., Higgs, S., Dunlop, J.I., ... & Vanlandingham, D.L. (2018). Culex tarsalis is a competent vector species for Cache Valley virus. Parasites & vectors, 11, 1-6. DOI: https://doi.org/10.1186/s13071-018-3103-2
Braack, L., Gouveia de Almeida, A.P., Cornel, A.J., Swanepoel, R., & De Jager, C. (2018). Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites & vectors, 11, 1-26. DOI: https://doi.org/10.1186/s13071-017-2559-9
Sule, W.F., Oluwayelu, D.O., Hernández-Triana, L.M., Fooks, A.R., Venter, M., & Johnson, N. (2018). Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasites & vectors, 11, 1-10. DOI: https://doi.org/10.1186/s13071-018-2998-y
Mancini, G., Montarsi, F., Calzolari, M., Capelli, G., Dottori, M., Ravagnan, S., ... & Savini, G. (2017). Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet. Ital, 53(2), 97-110.
Koch, R.T., Erazo, D., Folly, A.J., Johnson, N., Dellicour, S., Grubaugh, N.D., & Vogels, C.B. (2023). Genomic epidemiology of West Nile virus in Europe. One Health, 100664. DOI: https://doi.org/10.1016/j.onehlt.2023.100664
Vidaña, B., Busquets, N., Napp, S., Pérez-Ramírez, E., Jiménez-Clavero, M.Á., & Johnson, N. (2020). The role of birds of prey in West Nile virus epidemiology. Vaccines, 8(3), 550. DOI: https://doi.org/10.3390/vaccines8030550
Eder, M., Cortes, F., Teixeira de Siqueira Filha, N., Araújo de França, G.V., Degroote, S., Braga, C., ... & Turchi Martelli, C.M. (2018). Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Infectious diseases of poverty, 7, 1-24. DOI: https://doi.org/10.1186/s40249-018-0475-7
Mundhra, S. (2024). West Nile Virus: A Comprehensive Overview of Epidemiology and Pathology. Emerging Human Viral Diseases, Volume II: Encephalitic, Gastroenteric, and Immunodeficiency Viral Infections, 193-219. DOI: https://doi.org/10.1007/978-981-97-4480-0_5
Schneider, J., Bachmann, F., Choi, M., Kurvits, L., Schmidt, M.L., Bergfeld, L., ... & Corman, V.M. (2022). Autochthonous West Nile virus infection in Germany: Increasing numbers and a rare encephalitis case in a kidney transplant recipient. Transboundary and emerging diseases, 69(2), 221-226. DOI: https://doi.org/10.1111/tbed.14406
Bassal, R., Shohat, T., Kaufman, Z., Mannasse, B., Shinar, E., Amichay, D., ... & Lustig, Y. (2017). The seroprevalence of West Nile Virus in Israel: A nationwide cross sectional study. PLoS One, 12(6), e0179774. DOI: https://doi.org/10.1371/journal.pone.0179774
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1).
de Freitas Costa, E., Streng, K., Avelino de Souza Santos, M., & Counotte, M.J. (2024). The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLOS Neglected Tropical Diseases, 18(5), e0012162.
Barzon, L., Montarsi, F., Quaranta, E., Monne, I., Pacenti, M., Michelutti, A., ... & Capelli, G. (2022). Early start of seasonal transmission and co-circulation of West Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022. Eurosurveillance, 27(29), 2200548. DOI: https://doi.org/10.2807/1560-7917.ES.2022.27.29.2200548
A virus for which there is no cure is spreading across Europe and the United States. It is carried by mosquitoes (01.10.2024). newsyou.info. Retrieved from https://newsyou.info/2024/10/yevropoyu-i-ssha-shiritsya-virus-vid-yakogo-nemaye-likiv-jogo-perenosyat-komari [in Ukrainian]
World Health Organization (WHO). West Nile virus. Geneva, Switzerland: WHO; 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/westnilevirus. Accessed: February 28, 2019.
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1). DOI: https://doi.org/10.4081/tmr.8145
Ferraccioli, F., Riccetti, N., Fasano, A., Mourelatos, S., Kioutsioukis, I., & Stilianakis, N.I. (2023). Effects of climatic and environmental factors on mosquito population inferred from West Nile virus surveillance in Greece. Scientific Reports, 13(1), 18803. DOI: https://doi.org/10.1038/s41598-023-45666-3
Marchino, M., Paternoster, G., Favretto, A.R., Balduzzi, G., Berezowski, J., & Tomassone, L. (2021). Process evaluation of integrated West Nile virus surveillance in northern Italy: an example of a One Health approach in public health policy. Evaluation and Program Planning, 89, 101991. DOI: https://doi.org/10.1016/j.evalprogplan.2021.101991
de Freitas Costa, E., Streng, K., Avelino de Souza Santos, M., & Counotte, M.J. (2024). The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLOS Neglected Tropical Diseases, 18(5), e0012162. DOI: https://doi.org/10.1371/journal.pntd.0012162
Are mosquitoes to blame? An interview with the deputy head of the Ministry of Health about three infectious diseases that can concern Ukrainians (6/09/2024). life.pravda.com.ua. Retrieved from https://life.pravda.com.ua/health/tri-infekciyni-hvorobi-pro-yaki-varto-pam-yatati-ukrajincyam-303566/ [in Ukrainian].
19 thousand suspicious cases of MSEK. Sanitary doctor Kuzin - about corruption, mosquitoes and the next pandemic (13/10/2024). www.bbc.com. Retrieved from https://www.bbc.com/ukrainian/articles/cz9p25x4jp1o [in Ukrainian].
Srihi, H., Chatti, N., Ben Mhadheb, M., Gharbi, J., & Abid, N. (2021). Phylodynamic and phylogeographic analysis of the complete genome of the West Nile virus lineage 2 (WNV-2) in the Mediterranean basin. BMC Ecology and Evolution, 21, 1-13. DOI: https://doi.org/10.1186/s12862-021-01902-w
Balakrishnan, A., Butte, D.K., & Jadhav, S.M. (2013). Complete genome sequence of West Nile virus isolated from Alappuzha district, Kerala, India. Genome Announcements, 1(3), 10-1128. DOI: https://doi.org/10.1128/genomeA.00230-13
Tajima, S., Ebihara, H., & Lim, C. K. (2024). Amino Acids at Positions 156 and 332 in the E Protein of the West Nile Virus Subtype Kunjin Virus Classical Strain OR393 Are Involved in Plaque Size, Growth, and Pathogenicity in Mice. Viruses, 16(8), 1237. DOI: https://doi.org/10.3390/v16081237
Frost, M.J., Zhang, J., Edmonds, J.H., Prow, N.A., Gu, X., Davis, R., ... & Kirkland, P.D. (2012). Characterization of virulent West Nile virus kunjin strain, Australia, 2011. Emerging infectious diseases, 18(5), 792. DOI: https://doi.org/10.3201/eid1805.111720
Gray, T.J., & Webb, C.E. (2014). A review of the epidemiological and clinical aspects of West Nile virus. International journal of general medicine, 193-203. DOI: https://doi.org/10.2147/IJGM.S59902
Bakonyi, T., Ivanics, É., Erdélyi, K., Ursu, K., Ferenczi, E., Weissenböck, H., & Nowotny, N. (2006). Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerging infectious diseases, 12(4), 618. DOI: https://doi.org/10.3201/eid1204.051379
Baturin, A.A., Tkachenko, G.A., Ledeneva, M.L., Lemasova, L.V., Bondareva, O.S., Kaysarov, I.D., ... & Teteryatnikova, N.N. (2021). Molecular genetic analysis of West Nile virus variants circulating in European Russia between 2010 and 2019. Journal of microbiology, epidemiology and immunobiology, 98(3), 308-318. DOI: https://doi.org/10.36233/0372-9311-85
Balatsos, G., Beleri, S., Tegos, N., Bisia, M., Karras, V., Zavitsanou, E., ... & Patsoula, E. (2024). Overwintering West Nile virus in active Culex pipiens mosquito populations in Greece. Parasites & Vectors, 17(1), 286. DOI: https://doi.org/10.1186/s13071-024-06367-6
Ramos-Lorente, S.E., Berzal-Herranz, B., Romero-López, C., & Berzal-Herranz, A. (2024). Recruitment of the 40S ribosomal subunit by the West Nile virus 3′ UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Research, 343, 199340. DOI: https://doi.org/10.1016/j.virusres.2024.199340
Llorente, F. (2023). West Nile Virus Infection. Pathogens, 12(2), 151. DOI: https://doi.org/10.3390/pathogens12020151
Zou, S., Foster, G.A., Dodd, R.Y., Petersen, L.R., & Stramer, S.L. (2010). West Nile fever characteristics among viremic persons identified through blood donor screening. The Journal of infectious diseases, 202(9), 1354-1361. DOI: https://doi.org/10.1086/656602
Riccetti, N., Ferraccioli, F., Fasano, A., & Stilianakis, N.I. (2023). Demographic characteristics associated with West Nile virus neuroinvasive disease–A retrospective study on the wider European area 2006–2021. Plos one, 18(9), e0292187. DOI: https://doi.org/10.1371/journal.pone.0292187
Ronca, S.E., Ruff, J.C., & Murray, K.O. (2021). A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease?. PLoS neglected tropical diseases, 15(5), e0009190. DOI: https://doi.org/10.1371/journal.pntd.0009190
Sah, R., Borde, K., Mohanty, A., Chandran, D., Hussein, N.R., Lorenzo, J.M., & Dhama, K. (2022). Recent outbreaks of West Nile Virus (WNV) in the United States of America and European countries; current scenario and counteracting prospects–correspondence. International Journal of Surgery, 106, 106946. DOI: https://doi.org/10.1016/j.ijsu.2022.106946
Téllez-Zenteno, J.F., Hunter, G., Hernández-Ronquillo, L., & Haghir, E. (2013). Neuroinvasive West Nile virus disease in Canada. The Saskatchewan experience. Canadian journal of neurological sciences, 40(4), 580-584. DOI: https://doi.org/10.1017/S0317167100014700
Watts, D.M., Rodriguez, C.M., Palermo, P.M., Suarez, V., Wong, S.J., Orbegozo, J., ... & Handel, G.A. (2020). Serosurvey for dengue virus infection among pregnant women in the West Nile virus enzootic community of El Paso Texas. PloS One, 15(11), e0242889. DOI: https://doi.org/10.1371/journal.pone.0242889
Fulton, C.D., Beasley, D.W., Bente, D.A., & Dineley, K.T. (2020). Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain, Behavior, & Immunity-Health, 7, 100105. DOI: https://doi.org/10.1016/j.bbih.2020.100105
Kotsev, S., Christova, I., & Pishmisheva-Peleva, M. (2020). West Nile fever–clinical and epidemiological characteristics. Review of the literature and contribution with three clinical cases. Folia Medica, 62(4), 843-850. DOI: https://doi.org/10.3897/folmed.62.e51225
Girl, P., Euringer, K., Coroian, M., Mihalca, A.D., Borde, J.P., & Dobler, G. (2024). Comparison of Five Serological Methods for the Detection of West Nile Virus Antibodies. Viruses, 16(5), 788. DOI: https://doi.org/10.3390/v16050788
Gómez-Vicente, E., Garcia, R., Calatrava, E., Olivares Duran, M.J., Gutiérrez-Bautista, J.F., Rodriguez-Granger, J., ... & Sampedro-Martinez, A. (2022). Comparative evaluation of chemiluminescent immunoassay and enzyme-linked immunosorbent assays for the diagnosis of West Nile virus infections. APMIS, 130(4), 215-220. DOI: https://doi.org/10.1111/apm.13207
Rusenova, N., Rusenov, A., & Monaco, F. (2024). A Retrospective Study on the Seroprevalence of West Nile Virus Among Donkeys and Mules in Bulgaria. Vector-Borne and Zoonotic Diseases, 24(5), 274-277. DOI: https://doi.org/10.1089/vbz.2023.0095
Cvjetković, I.H., Radovanov, J., Kovačević, G., Turkulov, V., & Patić, A. (2023). Diagnostic value of urine qRT-PCR for the diagnosis of West Nile virus neuroinvasive disease. Diagnostic Microbiology and Infectious Disease, 107(1), 115920. DOI: https://doi.org/10.1016/j.diagmicrobio.2023.115920
Pappa, S., Chaintoutis, S.C., Dovas, C.I., & Papa, A. (2021). PCR-based next-generation West Nile virus sequencing protocols. Molecular and Cellular Probes, 60, 101774. DOI: https://doi.org/10.1016/j.mcp.2021.101774
Tang, H., Liu, Y., Ren, R., Liu, Y., He, Y., Qi, Z., ... & Zhao, P. (2022). Identification of clinical candidates against West Nile virus by activity screening in vitro and effect evaluation in vivo. Journal of Medical Virology, 94(10), 4918-4925.
Sinigaglia, A., Peta, E., Riccetti, S., & Barzon, L. (2020). New avenues for therapeutic discovery against West Nile virus. Expert Opinion on Drug Discovery, 15(3), 333-348. DOI: https://doi.org/10.1080/17460441.2020.1714586
Tang, W.D., Tang, H.L., Peng, H.R., Ren, R.W., Zhao, P., & Zhao, L.J. (2023). Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Frontiers in Microbiology, 14, 1182798. DOI: https://doi.org/10.3389/fmicb.2023.1182798
Castaneda, L., & Poquiz, P. (2024). West Nile Virus Encephalitis Disguised as a Cerebrovascular Accident. Proceedings of UCLA Health, 28.
Tunkel, A.R., Glaser, C.A., Bloch, K.C., Sejvar, J.J., Marra, C.M., Roos, K.L., ... & Whitley, R.J. (2008). The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clinical infectious diseases, 303-327. DOI: https://doi.org/10.1086/589747
Lin, S.C., Zhao, F.R., Janova, H., Gervais, A., Rucknagel, S., Murray, K.O., ... & Diamond, M.S. (2023). Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nature communications, 14(1), 5973. DOI: https://doi.org/10.1038/s41467-023-41600-3
Rodríguez-Pulido, M., Martín-Acebes, M.A., Escribano-Romero, E., Blázquez, A.B., Sobrino, F., Borrego, B., ... & Saiz, J.C. (2012). Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One, 7(11), e49494. DOI: https://doi.org/10.1371/journal.pone.0049494
McIver, K. (2021). Recovery from a severe West Nile Virus infection in a one-year-old stallion following interferon alpha-2b treatment: an equine model for human therapy.
Wessel, A.W., Doyle, M.P., Engdahl, T.B., Rodriguez, J., Crowe, J.E., & Diamond, M.S. (2021). Human monoclonal antibodies against NS1 protein protect against lethal West Nile virus infection. Mbio, 12(5), 10-1128. DOI: https://doi.org/10.1128/mBio.02440-21
Rizzo, S., Imperato, P., Mora-Cárdenas, E., Konstantinidou, S., Marcello, A., & Sblattero, D. (2020). Selection and characterization of highly specific recombinant antibodies against West Nile Virus E protein. Journal of biotechnology, 311, 35-43. DOI: https://doi.org/10.1016/j.jbiotec.2020.02.004
Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Čurlík, J., ... & Kulkarni, A. (2022). Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Frontiers in Microbiology, 13, 801466. DOI: https://doi.org/10.3389/fmicb.2022.801466
Petersen, L.R. (2008). Clinical manifestations, diagnosis, and treatment of West Nile virus infection. UpToDate. UpToDate, Waltham.
Weiß, R., Issmail, L., Rockstroh, A., Grunwald, T., Fertey, J., & Ulbert, S. (2023). Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Frontiers in Cellular and Infection Microbiology, 13, 1279147. DOI: https://doi.org/10.3389/fcimb.2023.1279147
AlQahtani, M., Kumar, N., Aljawder, D., Abdulrahman, A., Mohamed, M.W., Alnashaba, F., ... & Atkin, S.L. (2022). Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Scientific Reports, 12(1), 4925. DOI: https://doi.org/10.1038/s41598-022-08794-w
Tang, H., Liu, Y., Ren, R., Liu, Y., He, Y., Qi, Z., ... & Zhao, P. (2022). Identification of clinical candidates against West Nile virus by activity screening in vitro and effect evaluation in vivo. Journal of Medical Virology, 94(10), 4918-4925. DOI: https://doi.org/10.1002/jmv.27891
Fonzo, M., Bertoncello, C., Tudor, L., Miccolis, L., Serpentino, M., Petta, D., ... & Trevisan, A. (2024). Do we protect ourselves against West Nile virus? A systematic review on knowledge, attitudes, and practices and their determinants. Journal of Infection and Public Health. DOI: https://doi.org/10.1016/j.jiph.2024.03.012
Moua, Y., Kotchi, S.O., Ludwig, A., & Brazeau, S. (2021). Mapping the habitat suitability of West Nile virus vectors in Southern Quebec and Eastern Ontario, Canada, with species distribution modeling and satellite earth observation data. Remote Sensing, 13(9), 1637. DOI: https://doi.org/10.3390/rs13091637
García-Carrasco, J.M., Muñoz, A.R., Olivero, J., Segura, M., & Real, R. (2021). Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS neglected tropical diseases, 15(1), e0009022.
Wimberly, M.C., Davis, J.K., Hildreth, M.B., & Clayton, J.L. (2022). Integrated forecasts based on public health surveillance and meteorological data predict West Nile virus in a high-risk region of North America. Environmental Health Perspectives, 130(8), 087006. DOI: https://doi.org/10.1289/EHP10287
García-Carrasco, J.M., Muñoz, A.R., Olivero, J., Segura, M., & Real, R. (2021). Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS neglected tropical diseases, 15(1), e0009022. DOI: https://doi.org/10.1371/journal.pntd.0009022
Holcomb, K.M., Staples, J.E., Nett, R.J., Beard, C.B., Petersen, L.R., Benjamin, S.G., ... & Johansson, M.A. (2023). Multi-model prediction of West Nile virus neuroinvasive disease with machine learning for identification of important regional climatic drivers. GeoHealth, 7(11), e2023GH000906. DOI: https://doi.org/10.1029/2023GH000906
Gould, C.V., Staples, J.E., Huang, C.Y.H., Brault, A.C., & Nett, R.J. (2023). Combating west nile virus disease–Time to revisit vaccination. New England Journal of Medicine, 388(18), 1633-1636. DOI: https://doi.org/10.1056/NEJMp2301816
A virus for which there is no cure is spreading across Europe and the United States. It is carried by mosquitoes (01.10.2024). newsyou.info. Retrieved from https://newsyou.info/2024/10/yevropoyu-i-ssha-shiritsya-virus-vid-yakogo-nemaye-likiv-jogo-perenosyat-komari [in Ukrainian].
Curren, E.J., Shankar, M.B., Fischer, M., Meltzer, M.I., Erin Staples, J., & Gould, C.V. (2021). Cost-effectiveness and impact of a targeted age-and incidence-based West Nile virus vaccine strategy. Clinical Infectious Diseases, 73(9), 1565-1570. DOI: https://doi.org/10.1093/cid/ciab540
Hendy, D.A., Johnson-Weaver, B.T., Batty, C.J., Bachelder, E.M., Abraham, S.N., Staats, H.F., & Ainslie, K.M. (2023). Delivery of small molecule mast cell activators for West Nile Virus vaccination using acetalated dextran microparticles. International journal of pharmaceutics, 634, 122658. DOI: https://doi.org/10.1016/j.ijpharm.2023.122658
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 В. С. Копча

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0