THE ROLE OF PROBIOTIC CULTURES IN THE FORMATION OF THE GUT MICROBIOTA. THE GUT-BRAIN MICROBIOTA AXIS

Authors

DOI:

https://doi.org/10.11603/1681-2727.2024.4.15006

Keywords:

probiotic, intestinal microbiota, enteric nervous system, gut-brain axis, stress

Abstract

Probiotics and prebiotics modulate the gut-brain axis, which has a supportive effect on the central nervous system, and also reduces or controls the incidence of some mental disorders (depression, anxiety, autism, schizophrenia, and Alzheimer’s disease). The commensal microbiota plays a central role in the relationship between the gut microbiota and the central nervous system (the microbiota-gut-brain axis).

The gut-brain axis (GBA) consists of bidirectional communication between the central and enteric nervous systems, linking the emotional and cognitive centers of the brain with peripheral gut functions. As a result, modulation of the gut microbiota is considered a key aspect in the treatment of neurological disorders.

Research shows that the gut microbiome can influence the gut-brain axis and play an important role in the prevention and control of certain brain diseases, such as stress, Alzheimer’s disease, depression and insomnia.

Conclusions: The presented literature data can provide a motivational basis for conducting additional and in-depth research in the study of pathogenetic aspects of anxiety syndromes and stress.

Author Biographies

V. V. Kunovskyi, Danylo Halytsky Lviv National Medical University

PhD, Associate Professor of the Department of General Surgery

O. V. Laba, Danylo Halytsky Lviv National Medical University

PhD, assistant of the Department of Obstetrics, Gynecology and Perinatology, FPED

 

L. M. Kunovska, Danylo Halytsky Lviv National Medical University

assistant of Department of Pediatrics and Neonatology of the Faculty of Postgraduate Education (FPED)

References

Ansari, F., Neshat, M., Pourjafar, H., Jafari, S.M., Samakkhah, S.A., & Mirzakhani, E. (2023). The role of probiotics and prebiotics in modulating of the gut-brain axis. Frontiers in nutrition, 10, 1173660.

Ojeda, J., Ávila, A., & Vidal, P.M. (2021). Gut microbiota interaction with the central nervous system throughout life. Journal of Clinical Medicine, 10(6), 1299.

Ansari, F., Pourjafar, H., Tabrizi, A., & Homayouni, A. (2020). The effects of probiotics and prebiotics on mental disorders: a review on depression, anxiety, Alzheimer, and autism spectrum disorders. Current pharmaceutical biotechnology, 21(7), 555-565.

Alli, S.R., Gorbovskaya, I., Liu, J.C., Kolla, N.J., Brown, L., & Müller, D.J. (2022). The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: a systematic review of clinical trials and observational studies. International journal of molecular sciences, 23(9), 4494.

Ghoshal, U.C. (2018). Gut microbiota-brain axis modulation by a healthier microbiological microenvironment: facts and fictions. Journal of Neurogastroenterology and Motility, 24(1), 4.

Pluta, R., Ułamek-Kozioł, M., Januszewski, S., & Czuczwar, S.J. (2020). Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging (Albany NY), 12(6), 5539.

Desai, V., Kozyrskyj, A.L., Lau, S., Sanni, O., Dennett, L., Walter, J., & Ospina, M.B. (2021). Effectiveness of probiotic, prebiotic, and synbiotic supplementation to improve perinatal mental health in mothers: a systematic review and meta-analysis. Frontiers in psychiatry, 12, 622181.

Liu, X., Cao, S., & Zhang, X. (2015). Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. Journal of agricultural and food chemistry, 63(36), 7885-7895.

Carabotti, M., Scirocco, A., Maselli, M.A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 28(2), 203.

Lee, J.Y., Kim, N., Nam, R.H., Sohn, S.H., Lee, S.M., Choi, D., ... & Lee, D.H. (2017). Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner. PloS one, 12(12), e0188992.

Mayer, E.A., Savidge, T., & Shulman, R.J. (2014). Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology, 146(6), 1500-1512.

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility, 26(8), 1155-1162.

Zareie, M., Johnson-Henry, K., Jury, J., Yang, P.C., Ngan, B.Y., McKay, D.M., ... & Sherman, P.M. (2006). Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut, 55(11), 1553-1560.

Jandu, N., Zeng, Z.J., Johnson-Henry, K.C., & Sherman, P.M. (2009). Probiotics prevent enterohaemorrhagic Escherichia coli O157:H7-mediated inhibition of interferon-γ-induced tyrosine phosphorylation of STAT-1. Microbiology, 155(2), 531-540.

Foster, L., Tompkins, T., & Dahl, W. (2011). A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. Beneficial microbes, 2(4), 319-334.

Wine, E., Gareau, M.G., Johnson-Henry, K., & Sherman, P.M. (2009). Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiology Letters, 300(1), 146-152.

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2012). Scientific Opinion on the substantiation of health claims related to a combination of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum subsp. longum CNCM I-3470 and alleviation of psychological stress (ID 938) and “maintains the balance of healthy microbiota that helps to strengthen the natural defence”(ID 2942)(further assessment) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA Journal, 10(8), 2849.

Possemiers, S., Marzorati, M., Verstraete, W., & Van de Wiele, T. (2010). Bacteria and chocolate: a successful combination for probiotic delivery. International journal of food microbiology, 141(1-2), 97-103.

Roselli, M., Finamore, A., Nuccitelli, S., Carnevali, P., Brigidi, P., Vitali, B., ... & Mengheri, E. (2009). Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflammatory bowel diseases, 15(10), 1526-1536.

Vitali, B., Ndagijimana, M., Cruciani, F., Carnevali, P., Candela, M., Guerzoni, M.E., & Brigidi, P. (2010). Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. Bmc Microbiology, 10, 1-13.

Girard, S.A., Bah, T.M., Kaloustian, S., Lada-Moldovan, L., Rondeau, I., Tompkins, T.A., ... & Rousseau, G. (2009). Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. British journal of nutrition, 102(10), 1420-1425.

Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., ... & Tompkins, T. (2014). Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterology & Motility, 26(4), 510-520.

Arseneault-Bréard, J., Rondeau, I., Gilbert, K., Girard, S.A., Tompkins, T.A., Godbout, R., & Rousseau, G. (2012). Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. British Journal of Nutrition, 107(12), 1793-1799.

Ohland, C.L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., & Madsen, K.L. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 38(9), 1738-1747.

Sarkar, A., Lehto, S.M., Harty, S., Dinan, T.G., Cryan, J.F., & Burnet, P.W. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in neurosciences, 39(11), 763-781.

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., ... & Cazaubiel, J.M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755-764.

Vlainić, J., Suran, J., Vlainić, T., & Vukorep Letizia, A. (2016). Probiotics as an adjuvant therapy in major depressive disorder. Current neuropharmacology, 14(8), 952-958.

Khalesi, S., Sun, J., Buys, N., & Jayasinghe, R. (2014). Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64(4), 897-903.

Mayer, E.A., & Tillisch, K. (2011). The brain-gut axis in abdominal pain syndromes. Annual review of medicine, 62(1), 381-396.

Li, H.Y., Zhou, D.D., Gan, R.Y., Huang, S.Y., Zhao, C.N., Shang, A.O., ... & Li, H.B. (2021). Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 13(9), 3211.

Alli, S.R., Gorbovskaya, I., Liu, J.C., Kolla, N.J., Brown, L., & Müller, D.J. (2022). The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: a systematic review of clinical trials and observational studies. International journal of molecular sciences, 23(9), 4494.

Published

2024-12-17

How to Cite

Kunovskyi, V. V., Laba, O. V., & Kunovska, L. M. (2024). THE ROLE OF PROBIOTIC CULTURES IN THE FORMATION OF THE GUT MICROBIOTA. THE GUT-BRAIN MICROBIOTA AXIS. Infectious Diseases – Infektsiyni Khvoroby, (4), 43–50. https://doi.org/10.11603/1681-2727.2024.4.15006

Issue

Section

Reviews and lectures