PATHOGENETIC FEATURES OF ANTIVIRAL PROTEINS AND THE CRISPR-CAS SYSTEM IN THE TREATMENT OF PATIENTS WITH HIV INFECTION
DOI:
https://doi.org/10.11603/1681-2727.2024.4.14830Keywords:
HIV-1, APOBEC3, mC46 inhibitor, A3G-D128K, IFITMs, BST-2/tetherin, CRISPR-CasAbstract
The human immunodeficiency virus (HIV) belongs to the family of retroviruses, causing HIV infection. HIV infection is a socially dangerous infectious disease that develops as a result of long-term persistence of the virus in lymphocytes, macrophages and cells of nervous tissue. The disease is characterized by progressive dysfunction of the immune, nervous, lymphatic and other body systems. The terminal stage is acquired immune deficiency syndrome (AIDS), in which the body’s immune system loses the ability to protect the patient from HIV-associated diseases. Without treatment, death from AIDS occurs in 100 % of cases.
Currently, there are no effective vaccines or drugs for HIV infection. Combination antiretroviral therapy (ART) is the standard of care. A major obstacle to HIV treatment, including ART, is the presence of long-lasting HIV reservoirs that can reactivate after treatment is stopped.
In addition to antiviral drugs, alternative methods of HIV therapy, such as gene editing using APOBEC3, BST-2/Tetherin, and the CRISPR-Cas system, have shown promising results in the treatment of HIV infection.
References
Hussein, M., Molina, M.A., Berkhout, B., & Herrera-Carrillo, E. (2023). A CRISPR-Cas Cure for HIV/AIDS Int. J. Mol. Sci. 24, 1563. DOI: https://doi.org/10.3390/ijms24021563
Public Health Center of the Ministry of Health of Ukraine. (07/05/2024). Incidence of HIV infection in the regions of Ukraine. phc.org.ua. Retrieved from https://phc.org.ua/kontrol-zakhvoryuvan/vilsnid/statistika-z-vilsnidu [in Ukrainian].
Staeheli, P., Hallera, O. (2018). Human MX2/MxB: a Potent Interferon-Induced Postentry Inhibitor of Herpesviruses and HIV-1. Journal of Virology, 92(24), e00709-18. DOI: https://doi.org/10.1128/JVI.00709-18
Pawar, P., Gokavi, J., Wakhare, S., Bagul, R., Ghule, U., Khan, I.,… & Saxena, V. (2023). MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses, 15, 2206. DOI: https://doi.org/10.3390/v15112206
Pecori, R., Di Giorgio, S., Lorenzo, J.P. & Papavasiliou, F.N. (2022). Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505-518. DOI: https://doi.org/10.1038/s41576-022-00459-8
Chen, X.S. (2021). Insights into the structures and multimeric status of APOBEC proteins involved in viral restriction and other cellular functions. Viruses, 13, 497. DOI: https://doi.org/10.3390/v13030497
Ito, J., Gifford, R.J., Sato, K. (2020). Retroviruses drive the rapid evolution of mammalian APOBEC3 genes. Proc. Natl Acad. Sci. USA, 117, 610-618. DOI: https://doi.org/10.1073/pnas.1914183116
Harris, R.S., Dudley, J.P. (2015). APOBECs and virus restriction. Virology. 479-480, 131-145. DOI: https://doi.org/10.1016/j.virol.2015.03.012
Molan, A.M., Hanson, H.M., Chweya, C.M., Anderson, B.D., Starrett, G.J., Richards, C.M., & Harris, R.S. (2017). APOBEC3B lysine residues are dispensable for DNA cytosine deamination, HIV-1 restriction, and nuclear localization. Virology. 511, 74-81. DOI: https://doi.org/10.1016/j.virol.2017.08.025
Mohammadzadeh, N., Follack, T.B., Love, R.P., Stewart, K., Sanche, S., & Chelico, L. (2019). Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology, 527, 21-31. DOI: https://doi.org/10.1016/j.virol.2018.11.004
Salas-Briceno, K., Ross, S.R. (2021). Repair of APOBEC3G-Mutated Retroviral DNA In Vivo Is Facilitated by the Host Enzyme Uracil DNA Glycosylase 2. Journal of Virology, 95:e01244-21. DOI: https://doi.org/10.1128/JVI.01244-21
Kouno, T., Shibata, S., Shigematsu, M., Hyun, J., Kim, T.G., Matsuo, H. & Wolf, M. (2023). Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. Nature Communications, 14, 4037. DOI: https://doi.org/10.1038/s41467-023-39796-5
Fukuda, H., Li, S., Sardo, L., Smith, J.L., Yamashita, K., Sarca, A.D., … & Izumi, T. (2019). Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association Front. Cell. Infect. Microbiol., 9. DOI: https://doi.org/10.3389/fcimb.2019.00129
Ito, F., Alvarez-Cabrera, A.L., Liu, S., Yang, H., Shiriaeva, A., Zhou, Z.H., & Chen, X.S. (2023). Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. Science advances, 9(1), eade3168. DOI: https://doi.org/10.1126/sciadv.ade3168
Li, Y.-L., Langley, C.A., Azumaya, C.M., Echeverria, I., Chesarino, N.M., Emerman, M., … & Gross, J.D. (2023). The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature, 615, 728-733. DOI: https://doi.org/10.1038/s41586-023-05779-1
Ito, F., Alvarez-Cabrera, A.L., Kim, K., Zhou, Z.H., & Chen, X.S. (2023). Structural basis of HIV-1 Vif-mediated E3 ligase targeting of host APOBEC3H. Nature communications, 14(1), 5241. DOI: https://doi.org/10.1038/s41467-023-40955-x
Delviks-Frankenberry, K.A., Ojha, C.R., Hermann, K.J., Hu, W.S., Torbett, B.E., & Pathak, V.K. (2023). Potent dual block to HIV-1 infection using lentiviral vectors expressing fusion inhibitor peptide mC46- and Vif-resistant APOBEC3G. Molecular therapy. Nucleic acids, 33, 794-809. DOI: https://doi.org/10.1016/j.omtn.2023.08.007
Delviks-Frankenberry, K.A., Ackerman, D., Timberlake, N.D., Hamscher, M., Nikolaitchik, O.A., Hu, W.S., Torbett, B.E., & Pathak, V.K. (2019). Development of Lentiviral Vectors for HIV-1 Gene Therapy with Vif-Resistant APOBEC3G. Molecular therapy. Nucleic acids, 18, 1023-1038. DOI: https://doi.org/10.1016/j.omtn.2019.10.024
Chen, Y., Jin, H., Tang, X., Li, L., Geng, X., Zhu, Y., Chong, H., & He, Y. (2022). Cell membrane-anchored anti-HIV single-chain antibodies and bifunctional inhibitors targeting the gp41 fusion protein: new strategies for HIV gene therapy. Emerging microbes & infections, 11(1), 30-49. DOI: https://doi.org/10.1080/22221751.2021.2011616
Yan, X., Chen, C., Wang, C., Lan, W., Wang, J., & Cao, C. (2022). Aromatic disulfides as potential inhibitors against interaction between deaminase APOBEC3G and HIV infectivity factor. Acta biochimica et biophysica Sinica, 54(5), 725-735. DOI: https://doi.org/10.3724/abbs.2022049
Gai, Y., Duan, S., Wang, S., Liu, K., Yu, X., Yang, C., ... & Yu, X. (2024). Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses, 16(4), 490. DOI: https://doi.org/10.3390/v16040490
Boso, G. & Kozak, C.A. (2020). Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms, 8(12), 1965. DOI: https://doi.org/10.3390/microorganisms8121965
Jia, X., Weber, E., Tokarev, A., Lewinski, M., Rizk, M., Suarez, M., … & Xiong, Y. (2014). Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. eLife, 3:e02362. DOI: https://doi.org/10.7554/eLife.02362
Barrangou, R., Marraffini, L.A. (2014). CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 54, 234-244. DOI: https://doi.org/10.1016/j.molcel.2014.03.011
Zhao, F., Zhang, T., Sun, X., Zhang, X., Chen, L., Wang, H.,… & Li, Z. (2023). A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nature Communications 14, 5545. DOI: https://doi.org/10.1038/s41467-023-41320-8
Yin, L., Zhao, F., Sun, H., Wang, Z., Huang, Y., Zhu, W.,… & Guo, F. (2020). CRISPR-Cas13a Inhibits HIV-1 Infection. Molecular therapy Nucleic acids. 21, 147-155. DOI: https://doi.org/10.1016/j.omtn.2020.05.030
Ophinni, Y., Inoue, M., Kotaki, T., & Kameoka, M. (2018). CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Sci. Rep., 8, 7784. DOI: https://doi.org/10.1038/s41598-018-26190-1
Zhu, W., Lei, R., Le Duff, Y., Li, J., Guo, F., Wainberg, M.A., & Liang, C. (2015). The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 12, 22. DOI: https://doi.org/10.1186/s12977-015-0150-z
Charlesworth, C.T., Deshpande, P.S., Dever, D.P., Camarena, J., Lemgart, V.T., Cromer, M.K.,…& Bode, N.M. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med., 25, 249-254. DOI: https://doi.org/10.1038/s41591-018-0326-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Т. В. Бігуняк, Н. Я. Сідельник, А. А. Вашковець

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0