MARKERS OF INFLAMMATION IN TUBERCULOSIS AND HIV INFECTION
DOI:
https://doi.org/10.11603/1681-2727.2024.3.14711Keywords:
tuberculosis, HIV infection, cytokines, melatoninAbstract
Objective was to investigate inflammatory markers based on the literature to improve diagnosis and determine the prognosis of treatment in patients with tuberculosis against the background of HIV infection.
Articles that investigated cytokines and melatonin in patients with co-infection tuberculosis/HIV were analysed. The search for scientific information was conducted using the PubMed and Web of Science databases.
An analysis of the literature has shown that anti-inflammatory transforming growth factor (TGF)-β1 and IL-10 are frequent biomarkers associated with severe tuberculosis. Chronic immune activation caused by pro-inflammatory cytokines such as IL-1β accompanies HIV progression, leading to tissue damage. Elevated levels of sIL-2R in patients with tuberculosis indicate a significant degree of T-cell activation, which affects the course of the disease. Melatonin is a dual-acting immune modulator. On the one hand, it increases the body’s defenses against foreign bodies, and on the other hand, it modulates tissue reactions, reducing pro-inflammatory and increasing anti-inflammatory cytokine levels.
Conclusions. Despite the fact that the literature review has provided information on a large number of markers that play an important role in the pathogenesis and course of TB and HIV, we still have insufficient data on their role in TB and HIV co-infection. This issue requires further and in-depth research.
References
Rego de Figueiredo, I., Branco Ferrão, J., Dias, S., Vieira Alves, R., Drummond Borges, D., Torres, … Panarra, A. (2021). Tuberculosis infection in HIV vs. non-HIV patients. HIV Medicine, 22 (8), 775-779. DOI:10.1111/hiv.13119
Valetskyi, Yu. M., Nychyporuk, V. O., & Valetska, R. O. (2024). Modern Features of the Epidemiological Situation of Tuberculosis in Ukraine (Review). Tuberculosis, Lung Diseases, HIV Infection, 1, 103-108. DOI:10.30978/TB2024-1-103 [in Ukrainian].
Navasardyan, I., Miwalian, R., Petrosyan, A., Yeganyan, S., & Venketaraman, V. (2024). HIV–TB Coinfection: Current Therapeutic Approaches and Drug Interactions. Viruses, 16(3), 1-13. DOI:10.3390/v16030321
Nosik, M., Ryzhov K., Rymanova I., Sobkin A., Kravtchenko A., Kuimova U., … Svitich O. (2021). Dynamics of Plasmatic Levels of Pro- and Anti-Inflammatory Cytokines in HIV-Infected Individuals with M. tuberculosis Co-Infection. Microorganisms, 9(11), 2291. DOI:10.3390/microorganisms9112291
Nosik, M., Belikova, M. G., Ryzhov, K., Avdoshina, D., Sobkin, A., Zverev, V. & Svitich O. (2023). Unique Profile of Proinflammatory Cytokines in Plasma of Drug-Naive Individuals with Advanced HIV/TB Co-Infection. Viruses, 15(6), 1330. DOI:10.3390/v15061330
Poladian, N., Orujyan, D., Narinyan, W., Oganyan, A. K., Navasardyan, I., Velpuri, P., … Venketaraman, V. (2023). Role of NF-κB during Mycobacterium tuberculosis Infection. International Journal of Molecular Sciences, 24(2), 1772. DOI:10.3390/ijms24021772
Stunnenberg, M. L., van Hamme, J., Trimp, M., Gringhuis, S. I., & Geijtenbeek, T. B. H. (2021). Abortive HIV-1 RNA induces pro-IL-1β maturation via protein kinase PKR and inflammasome activation in humans. European Journal of Immunology, 51(10), 2464–2477. DOI:10.1002/eji.202149275
Swinton, M. K., Carson, A., Telese, F., Sanchez, A. B., Soontornniyomkij, B., Rad, L., … Fields, J. A. (2019). Mitochondrial biogenesis is altered in HIV+ brains exposed to ART: implications for therapeutic targeting of astroglia. Neurobiology of Disease, 130, 104502. DOI:10.1016/j.nbd.2019.104502
Chao, W.-C., Yen, C.-L., Wu, C.-H., Shieh, C.-C. How mycobacteria take advantage of the weakness in human immune system in the modern world. Journal of Microbiology, Immunology and Infection, 53(2), 209-215. DOI:10.1016/j.jmii.2019.10.008
Rastogi, S., Ellinwood S., Augenstreich J., Mayer-Barber K. D., & Briken V. (2021). Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathogens, 17(7), 1-30. DOI:10.1371/journal.ppat.1009712
Li, G., Yang, F., He, X., Liu, Z., Pi, J., Zhu, Y., … Zhang G. (2020). Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes and Infection, 22(3), 119-126. DOI:10.1016/j.micinf.2019.10.001
Hilda, J. N., Das, S., Tripathy, S. P., & Hanna, L. E. (2020). Role of neutrophils in tuberculosis: A bird’s eye view. Innate Immunity, 26(4), 240-247. DOI:10.1177/1753425919881176
dos Reis, R. S., Sant, S., Keeney, H., & Wagner, M. C. E., Ayyavoo, V. Modeling HIV 1 neuropathogenesis using three dimensional human brain organoids (hBORGs) with HIV 1 infected microglia. Scientific Reports, 10, 1-17. DOI:10.1038/s41598-020-72214-0
Koeken, V. A. C. M., Ganiem, A. R., Dian, S., Ruslami, R., Chaidir, L., Netea, M. G., … van Laarhoven, A. (2021). Cerebrospinal fluid IL-1β is elevated in tuberculous meningitis patients but not associated with mortality. Tuberculosis, 126, 102019. DOI:10.1016/j.tube.2020.102019
Nie, W., Wang, J., Jing, W., Shi, W., Wang, Q., Huang, X., … Chu, N. (2020). Value of serum cytokine biomarkers TNF-α, IL-4, sIL-2R and IFN-γ for use in monitoring bacterial load and anti-tuberculosis treatment progress. Cytokine: X, 2(2), 1-8. DOI:10.1016/j.cytox.2020.100028
Titanji, B. K., Tejani, M., Farber, E. W., Mehta, C. C., Pace, T. W., Meagley, K., … Marconi, V. C. (2022). Cognitively Based Compassion Training for HIV Immune Nonresponders-An Attention-Placebo Randomized Controlled Trial. J Acquir Immune Defic Syndr, 89(3), 340-348. DOI:10.1097/QAI.0000000000002874
Plowes-Hernández, O., Prado-Calleros, H., Arroyo-Escalante, S., Zavaleta-Villa, B., Flores-Osorio, J., Arce, A. I., … Olivo-Díaz, A. (2021). Cervical lymph node tuberculosis and TNF, IL8, IL10, IL12B and IFNG polymorphisms. New Microbiol., 44(1), 24-32. https://newmicrobiologica.org
Hye-Soo Park, Yong Woo Back, In-Taek Jang, Kang-In Lee, Yeo-Jin Son, Han-Gyu Choi, … Hwa-Jung Kim. (2021) Mycobacterium tuberculosis Rv2145c Promotes Intracellular Survival by STAT3 and IL-10 Receptor Signaling. Frontiers in Immunology, 12, 1-16. DOI:10.3389/fimmu.2021.666293
Scott, N. R., Thirunavukkarasu, S., Rangel-Moreno, J., Griggs, D. W., & Khader, S. A. (2022). CWHM-12, an Antagonist of Integrin-Mediated Transforming Growth Factor-Beta Activation Confers Protection During Early Mycobacterium tuberculosis Infection in Mice. Journal of Interferon & Cytokine Research, 42(8), 421-429. DOI:10.1089/jir.2022.0027
Zhang, S., Li, G., Bi, J., Guo, Q., Fu, X., Wang, W., … Zhang, G. (2022). Association Between Functional Nucleotide Polymorphisms Up-regulating Transforming Growth Factor β1 Expression and Increased Tuberculosis Susceptibility. The Journal of Infectious Diseases, 225(5), 825-835. DOI:10.1093/infdis/jiaa585
Samer, S., Thomas, Y., Araínga, M., Carter, C., Shirreff, L. M., Arif, M. S., … Martinelli, E. (2022). Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo. The Journal of Clinical Investigation, 7(21), 1-18. DOI:10.1172/jci.insight.162290
Tan, Y., Guo, W., Zhu, Q., Song, S., Xiang, Y., Wu, S., … Liang, K. (2023). Characterization of peripheral cytokine-secreting cells responses in HIV/TB co-infection. Cellular and Infection Microbiology, 13, 1-10. DOI:10.3389/fcimb.2023.1162420
Kolotylo, T. R. (2019). The modern view on immunopathogenesis of HIV-infection and tuberculosis. Infectious Diseases, 2(96), 58-65. DOI:10.11603/1681-2727.2019.2 [in Ukrainian].
Arbue´s, A., Brees, D., Chibout, S. D., Fox, T., Kammüller, M., & Portevin, D. (2020). TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLOS Pathogens, 16(2), 1-23. DOI:10.1371/journal.ppat.1008312
Day, C. L., Willis, F., Staitieh, B. S., Campbell, A., Martinson N., Gandhi, N. R., & Auld, S. C. (2023). Mycobacterium tuberculosis-specific cytokine responses according to HIV status among household contacts of people with TB. Tuberculosis (Edinb), 139, 1-11. DOI:10.1016/j.tube.2023.102328
Vadaq, N., Zhang, Y., Meeder, E., Van de Wijer, L., Gasem, M. H., Ab Joosten, L., … Jam van der Ven, A. (2022). Microbiome-Related Indole and Serotonin Metabolites are Linked to Inflammation and Psychiatric Symptoms in People Living with HIV. International Journal of Tryptophan Research, 15, 1-13. DOI:10.1177/11786469221126888
Sheikhpour, M., Shokrgozar, M. A., Biglari, A., Pornour, M., Abdolrahimi, F., Dizaji, S. P., … Hanieh Abolfathi. (2020). Gene Expression and In Vitro Pharmacogenetic Studies of Dopamine and Serotonin Gene Receptors in Tuberculosis. Tanaffos, 20(2), 126-133. https://www.tanaffosjournal.ir
Melhuish Beaupre, L, M., Brown, G. M., Gonçalves, V. F., Kennedy, J. L. (2021). Melatonin’s neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders. Translational Psychiatry, 339, 1-10. DOI:10.1038/s41398-021-01464-x
Chitimus, D. M, Popescu, M. R., Voiculescu, S. E., Panaitescu, A. M., Pavel, B., Zagrean, L., & Zagrean, A.-M. (2020). Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules, 10(9), 1211. DOI:10.3390/biom10091211
Joseph Wai-Hin Leung, Kwok-Kuen Cheung, Shirley Pui-Ching Ngai, Hector Wing-Hong Tsang, & Benson Wui-Man Lau. (2020). Protective Effects of Melatonin on Neurogenesis Impairment in Neurological Disorders and Its Relevant Molecular Mechanisms. International Journal of Molecular Sciences, 21(16), 5645. DOI:10.3390/ijms21165645
Zhang, D., Xu, S., Wang, Y., & Zhu G. (2021). The Potentials of Melatonin in the Prevention and Treatment of Bacterial Meningitis Disease. Molecules, 26, 1419. DOI:10.3390/molecules26051419
Castagnola, E., Woeppel, K., Golabchi, A., McGuier, M., Chodapaneedi, N., Metro, J. … Cui, X. T. (2020). Electrochemical detection of exogenously administered melatonin in the brain. Analyst, 145(7), 2612-2620. DOI:10.1039/d0an00051e
Onaolapo, O. J., Onaolapo, A. Y., Olowe, O. A., Udoh, M. O., Udoh, D. O., Nathaniel, I. T. (2019). Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Current Neuropharmacology, 18(7), 563-577. DOI: 10.2174/1570159X18666191230114339
Lu, J., Luo, Y., Mei, S., Fang, Y., Zhang, J., & Chen, S. (2020). The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Current Neuropharmacology, 19(1), 3-23. DOI:10.2174/1570159X18666200503024700
Cho, J. H., Bhutani, S., Kim, C. H., & Irwin, M. R. (2021). Anti-Inflammatory Effects of Melatonin: A Systematic Review and Meta-Analysis of Clinical Trials. Brain Behav Immun., 93, 245-253. DOI:10.1016/j.bbi.2021.01.034
Liu, R., Luo, X., Li, J., Lei, Y., Zeng, F., Huang, X. & Yang, F. (2022). Melatonin: A window into the organ-protective effects of sepsis. Biomedicine & Pharmacotherapy, 154, 113556. DOI:10.1016/j.biopha.2022.113556
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Т. К. Сагайдак, Н. О. Скороходова
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0