COMBINATION OF ANTIBIOTICS AND BACTERIOPHAGES TO COMBAT ANTIBIOTIC-RESISTANT MICROORGANISMS
DOI:
https://doi.org/10.11603/1681-2727.2024.3.14669Keywords:
bacteriophages, phage-antibiotic synergyAbstract
Despite antibiotics being the main method of combating bacterial infections today, the rapid emergence and prevalence of antibiotic resistance generate interest in alternative and supplementary antimicrobial strategies, particularly concerning infections caused by MDR, PDR, and XDR microorganisms. In recent decades, research has been conducted on the use of bacteriophages (phages) and antibiotics either separately or in combination, both in vitro and in vivo. The materials presented in the review indicate the synergistic action of phages and antibiotics when used in combination, although some experiments have shown indifferent effects and even antagonism between phages and antibiotics. Strategies involving the combination of phages and antibiotics are promising, especially concerning biofilms, including their mature forms.
References
Sait World Health Organization. Retrieved from https://www.who.int/news/item/22-06-2022-22-06-2022-lack-of-innovation-set-to-undermine-antibiotic-performance-and-health-gains.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Antimicrobial resistance surveillance in Europe 2023-2021 data (2023). Stockholm: European Centre for Disease Prevention and Control and World Health Organization.
Kuzin, I., Matskov, O., Bondar, R., Lapin, R., Vovk, T., Howard, A., et al. (2023). Notes from the Field: Responding to the Wartime Spread of Antimicrobial-Resistant Organisms — Ukraine, 2022. MMWR Morb Mortal Wkly Rep, 72, 1333-1334. DOI: https://doi.org/10.15585/mmwr.mm7249a5
Chanishvili, N. (2012). Phage therapy – history from twort and d’Herelle through Soviet experience to current approaches. Advances in Virus Research, 83, 3-40. DOI: https://doi.org/10.1016/B978-0-12-394438-2.00001-3
Waller, A. S., Yamada, T., Kristensen, D. M., Kultima, J. R., Sunagawa, S., Koonin, E. V., et al. (2014). Classification and quantification of bacteriophage taxa in human gut metagenomes. The ISME Journal, 8(7), 1391-1402. DOI: https://doi.org/10.1038/ismej.2014.30
US Food and Drug Administration (2006). Food additives permitted for direct addition to food for human consumption; bacteriophage preparation. US Food and Drug Administration, Silver Spring, MD.
Chung, K. M., Nang, S. C., & Tang, S. S. (2023). The safety of bacteriophages in treatment of diseases caused by multidrug-resistant bacteria. Pharmaceuticals, 16(10), 1347. DOI: https://doi.org/10.3390/ph16101347
Kaur, G., Agarwal, R. & Sharma, R. K. (2021). Bacteriophage therapy for critical and high-priority antibiotic-resistant bacteria and phage cocktail-antibiotic formulation perspective. Food and Environmental Virology, 13(4), 433-446. DOI: https://doi.org/10.1007/s12560-021-09483-z
Zurabov, F., Glazunov, E., Kochetova, T., Uskevich, V., & Popova, V. (2023). Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Scientific Reports, 13, 15188. DOI: https://doi.org/10.1038/s41598-023-42505-3
Maimaiti, Z., Li, Z., Xu, C., Chen, J., Chai, W. (2023). Global trends and hotspots of phage therapy for bacterial infection: A bibliometric visualized analysis from 2001 to 2021. Frontiers in Microbiology, 13, 1067803. DOI: https://doi.org/10.3389/fmicb.2022.1067803
Arias, C. F., Acosta, F. J., Bertocchini, F., Herrero, M. A., & Fernández-Arias, C. (2022). The coordination of anti-phage immunity mechanisms in bacterial cells. Nature Communications, 13(1), 7412. DOI: https://doi.org/10.1038/s41467-022-35203-7
Himmelweit, F. (1945). Combined Action of Penicillin and Bacteriophage on Staphylococci. The Lancet, 246(6361), 104-105. DOI: https://doi.org/10.1016/S0140-6736(45)91422-X
Bulssico, J., PapukashvilI, I., Espinosa, L., Gandon, S., & Ansaldi, M. (2023). Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation. PLOS Pathogens, 19(9), e1011602.
Chhibber, S., Kaur, T. & Kaur, S. (2013). Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS ONE, 8(2), e56022.
Torres-Barceló, C., & Hochberg, M. E. (2016). Evolutionary Rationale for Phages as Complements of Antibiotics. Trends in Microbiology, 24(4), 249-256. DOI: https://doi.org/10.1016/j.tim.2015.12.011
Zaytzeff-Jern, H., Meleney, F. L. (1941). Studies on phage VI. the effect of sulfapyridine and sulfanilamides on staphylococci and B. coli and their respective phages. J. Lab. Clin. Med., 26, 1756-1767.
Krueger, A. P., Cohn, T., Noble, N. (1947). Effect of Penicillin on the Reaction Between Phage and Staphylococci. Experimental Biology and Medicine, 66(1), 204-205. DOI: https://doi.org/10.3181/00379727-66-16036P
Hagens, S., Habel, A., & Bläsi, U. (2006). Augmentation of the Antimicrobial Efficacy of Antibiotics by Filamentous Phage. Microbial Drug Resistance, 12(3), 164-168. DOI: https://doi.org/10.1089/mdr.2006.12.164
Comeau, A. M., Tétart, F., Trojet, S. N., Prère, M.-F., & Krisch, H. M. (2007). Phage-Antibiotic Synergy (PAS): β-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth. PLoS ONE, 2(8), e799. DOI: https://doi.org/10.1371/journal.pone.0000799
De Soir, S., Parée, H., Kamarudin, N. H. N., Wagemans, J., Lavigne, R., Braem, A., et al. (2024). Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiology Spectrum, 12(1), e03219-23. DOI: https://doi.org/10.1128/spectrum.03219-23
Liu, Y., Zhao, Y., Qian, C., Huang, Z., Feng, L., Chen, L. et al. (2023). Study of Combined Effect of Bacteriophage vB3530 and Chlorhexidine on the Inactivation of Pseudomonas aeruginosa. BMC Microbiology, 23(1), 256. DOI: https://doi.org/10.1186/s12866-023-02976-w
Abdraimova, N., Shitikov, E., Gorodnichev, R., & Kornienko, M. (2023). Combination of bacteriophages and antibiotics as the most effective therapy against Staphylococcus aureus. Medicine of Extreme Situations, 25(2023(4)), 37-44. DOI: https://doi.org/10.47183/mes.2023.058
Necel, A., Bloch, S., Topka-Bielecka, G., Janiszewska, A., Łukasiak, A., Nejman-Faleńczyk, B. et al. (2022). Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics, 11(6), 712. DOI: https://doi.org/10.3390/antibiotics11060712
Gordillo Altamirano, F. L., Kostoulias, X., Subedi, D., Korneev, D., Peleg, A. Y., & Barr, J. J. (2022). Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. EBioMedicine, 80, 104045.
Eskenazi, A., Lood, C., Wubbolts, J., Hites, M., Balarjishvili, N., Leshkasheli, L., et al. (2022). Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nature Communications, 13(1), 302. DOI: https://doi.org/10.1038/s41467-021-27656-z
Bulssico, J., PapukashvilI, I., Espinosa, L., Gandon, S., & Ansaldi, M. (2023). Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation. PLOS Pathogens, 19(9), e1011602. DOI: https://doi.org/10.1371/journal.ppat.1011602
Chhibber, S., Kaur, T. & Kaur, S. (2013). Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS ONE, 8(2), e56022. DOI: https://doi.org/10.1371/journal.pone.0056022
Kaur, S., Harjai, K., & Chhibber, S. (2016). In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLOS ONE, 11(6), e0157626. DOI: https://doi.org/10.1371/journal.pone.0157626
Kamal, F., & Dennis, J. J. (2015). Burkholderia cepacia Complex Phage-Antibiotic Synergy (PAS): Antibiotics Stimulate Lytic Phage Activity. Applied and Environmental Microbiology, 81(3), 1132-1138. DOI: https://doi.org/10.1128/AEM.02850-14
Li, Y., Xiao, P., Wang, Y., Hao, Y. (2020). Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the Clinical Context. ACS Omega, 5(36), 22684-22690. DOI: https://doi.org/10.1021/acsomega.0c02294
Kumaran, D., Taha, M., Yi, Q., Ramirez-Arcos, S., Diallo, J., Carli, A. et al. (2018). Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms. Frontiers in Microbiology, 9(127), 1-11. DOI: https://doi.org/10.3389/fmicb.2018.00127
Nakamura, S., Nii, F., Shimizu, M., & Watanabe, I. (1971). Inhibition of Phage Growth by an Antibiotic Rugulosin Isolated from Myrothecium verucaria. Japanese Journal of Microbiology, 15(2), 113-120. DOI: https://doi.org/10.1111/j.1348-0421.1971.tb00560.x
Kever, L., Hardy, A., Luthe, T., Hünnefeld, M., Gätgens, C., Milke, L. et al. (2022). Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle. mBio, 13(3), e00783-22. DOI: https://doi.org/10.1128/mbio.00783-22
Akturk, E., Melo, L. D. R., Oliveira, H., Crabbé, A., Coenye, T., & Azeredo, J. (2023). Combining phages and antibiotic to enhance antibiofilm efficacy against an in vitro dual species wound biofilm. Biofilm, 6, 100147. DOI: https://doi.org/10.1016/j.bioflm.2023.100147
Meier, D., & Hofschneider, P. H. (1972). Effect of rifampicin on the growth of RNA bacteriophage M12. FEBS Letters, 25(1), 179-183. DOI: https://doi.org/10.1016/0014-5793(72)80480-0
Geiduschek, E., Sklar, J. (1969). Role of Host RNA Polymerase in Phage Development: Continual Requirement for a Host RNA Polymerase Component in a Bacteriophage Development. Nature, 221, 833-836. DOI: https://doi.org/10.1038/221833a0
Rahman, M., Kim, S., Kim, S. M., Seol, S. Y., & Kim, J. (2011). Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling, 27(10), 1087-1093. DOI: https://doi.org/10.1080/08927014.2011.631169
Pons, B. J., van Houte, S., Westra, E. R., Chevallereau, A. (2023). Ecology and evolution of phages encoding anti-CRISPR proteins. Journal of Molecular Biology, 435(7), 167974. DOI: https://doi.org/10.1016/j.jmb.2023.167974
Dimitriu, T., Kurilovich, E., Łapińska, U., Severinov, K., Pagliara, S., Szczelkun, M. D., et al. (2022). Bacteriostatic antibiotics promote CRISPR-cas adaptive immunity by enabling increased spacer acquisition. Cell Host Microbe, 30(1), 31-40. DOI: https://doi.org/10.1016/j.chom.2021.11.014
Segall, A. M., Roach, D. R., & Strathdee, S. A. (2019). Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Current Opinion in Microbiology, 51, 46-50. DOI: https://doi.org/10.1016/j.mib.2019.03.005
Gordillo Altamirano, F. L., Kostoulias, X., Subedi, D., Korneev, D., Peleg, A. Y., & Barr, J. J. (2022). Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. EBioMedicine, 80, 104045. DOI: https://doi.org/10.1016/j.ebiom.2022.104045
Stachurska, X., Roszak, M., Jabłońska, J., Mizielińska, M., & Nawrotek, P. (2021). Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification. Antibiotics, 10(11), 1306. DOI: https://doi.org/10.3390/antibiotics10111306
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 В. П. Широбоков, В. А. Понятовський

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0