ANTI-EVOLUTION THERAPY: A NEW APPROACH TO THE TREATMENT OF INFECTIOUS DISEASES
DOI:
https://doi.org/10.11603/1681-2727.2023.4.14241Keywords:
antimicrobial resistance, antibiotics, bacteriophages, CRISPR adaptive prokaryotic defense system, adaptive mutagenesis, SOS response, transleisional polymerases, Mfd factor, anti-evolution drugsAbstract
SUMMARY. Antibiotics revolutionized medicine. Countless people have been saved through their use. However the development of antimicrobial resistance has created a serious crisis in medicine. Antimicrobial resistance is developing rapidly to all new therapeutic agents. This is a consequence of genetic variability of microorganisms, including mutagenesis. According to the synthetic theory of evolution, genetic rearrangements and mutations occur randomly, they are not localized either in time or in genome space, and there are no molecular mechanisms of variability. If this assumption is correct, then it is impossible to counter the development of antimicrobial resistance.
However, recently, the views on the nature of variability that have been dominant for a long period have undergone fundamental changes. The discovery of the CRISPR system of adaptive defense of prokaryotes against bacteriophages showed the fundamental possibility of localized genetic rearrangements directed by a selective factor.
A revolution in views on the nature of variability was made by the discovery of adaptive or stress-induced mutagenesis. It was discovered that under stress conditions, microorganisms activate molecular mechanisms of variability, the action of which can be localized in the region of the transcribed genes. Numerous experimental data have confirmed that antibiotics, causing stress, induce adaptive mutagenesis. Consequently, drugs that suppress regulatory pathways and molecular mechanisms of mutagenesis can prevent the development of antibiotic resistance. It is this principle that underlies the new direction in medicine of anti-evolution therapy.
References
World Health Organization (2022). Antimicrobial resistance. Geneva, Switzerland: WHO. https://www.who.int/health-topics/antimicrobial-resistance
Hoffman, S. J., Caleo, G. M., Daulaire, N., (2015). Strategies for achieving global collective action on antimicrobial resistance. Bull World Health Organ, 93(12). 867–876. https://doi:10.2471/BLT.15.153171 DOI: https://doi.org/10.2471/BLT.15.153171
Jasovsk´y D, Littmann J, Zorzet A, Cars O (2016). Antimicrobial resistance-a threat to the world’s sustainable development. Ups. J. Med. Sci. 121, 159–164. https://doi:10.1080/03009734.2016.1195900 DOI: https://doi.org/10.1080/03009734.2016.1195900
O’Neill J, Davies S, Rex J, White LJ, Murray R. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. London: Wellcome Trust and UK Government.
Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019. A systematic analysis. Lancet, 399. 629–655. https://doi:10.1016/S0140-6736(21)02724-0 DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Govindaraj Vaithinathan, A., Vanitha, A. (2018). WHO global priority pathogens list on antibiotic resistance: An urgent need for action to integrate One Health data. Perspect. Public Health. 138, 87–88. https://doi:10.1177/1757913917743881 DOI: https://doi.org/10.1177/1757913917743881
Pribis, J. P., Zhai, Y., Hastings, P. J., Rosenberg, S. M. (2022). Stress-Induced Mutagenesis, Gambler Cells, and Stealth Targeting Antibiotic-Induced Evolution. MBio. 13(3), e0107422. https://doi: 10.1128/mbio.01074-22. DOI: https://doi.org/10.1128/mbio.01074-22
Almeida Da Silva, P.E., Palomino, J.C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 66(7), 1417-1430. https://doi: 10.1093/jac/dkr173. DOI: https://doi.org/10.1093/jac/dkr173
Mehrad, B., Clark, N.M., Zhanel, G.G., Lynch, J.P., III, (2015). Antimicrobial resistance in hospital-acquired Gram-negative bacterial infections. Chest. 147, 1413–1421. https://doi.org/10.1378/chest.14-2171. DOI: https://doi.org/10.1378/chest.14-2171
Papon, N., Bougnoux, M.-E., d’Enfert. C. (2020). Tracing the Origin of Invasive Fungal Infections. Trends Microbiol, 28, 240–242. https://doi: 10.1016/j.tim.2020.01.007 DOI: https://doi.org/10.1016/j.tim.2020.01.007
Shor, E., Perlin, D.S. (2015). Coping with Stress and the Emergence of Multidrug Resistance in Fungi. PLoS Pathog. 11, e1004668. https://doi:10.1371/journal.ppat.1004668. DOI: https://doi.org/10.1371/journal.ppat.1004668
Lewis, J.S., 2nd., Wiederhold, N.P., Wickes, B.L., Patterson, T.F., Jorgensen, J.H. (2013). Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob. Agents Chemotherm, 57. 4559–4561. https://doi:10.1128/AAC.01144-13 DOI: https://doi.org/10.1128/AAC.01144-13
Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264, 375–382. https://doi:10.1126/science.8153624 DOI: https://doi.org/10.1126/science.8153624
Baker, S.J., Payne, D.J., Rappuoli, R., De Gregorio E. (2018). Technologies to address antimicrobial resistance. Proc Natl Acad Sci USA, 115, 12887–12895. https://doi:10.1073/pnas.1717160115 DOI: https://doi.org/10.1073/pnas.1717160115
Zhang, Q., Lambert, G., Liao, D., Kim, H., Robin, K., Tung, C.K., Pourmand, N., Austin, R.H. (2011). Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments Science, 333, 1764-1767. DOI:10.1126/science.1208747 DOI: https://doi.org/10.1126/science.1208747
Danis-Wlodarczyk, K.M., Wozniak, D.J., Abedon, S.T. (2021). Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel), 10(12), 1497. https://doi: 10.3390/antibiotics10121497. DOI: https://doi.org/10.3390/antibiotics10121497
Mani, I. (2023). Phage and phage cocktails formulations. Prog Mol Biol Transl Sci. 200. 159-169. https://doi: 10.1016/bs.pmbts.2023.04.007. DOI: https://doi.org/10.1016/bs.pmbts.2023.04.007
Duc, H.M., Zhang, Y., Hoang, S.M., Masuda, Y., Honjoh, K.I., Miyamoto, T. (2023). Phage Cocktail and Various Antibacterial Agents in Combination to Prevent the Emergence of Phage Resistance. Antibiotics (Basel). 12(6). 1077. https://doi: 10.3390/antibiotics12061077. DOI: https://doi.org/10.3390/antibiotics12061077
Diallo. K., Dublanchet, A. (2022). Benefits of combined phage antibiotic therapy for the control of antibiotic‐resistant bacteria: a literature review. Antibiotics (Basel). 11(7). 839. https://doi:10.3390/antibiotics11070839 DOI: https://doi.org/10.3390/antibiotics11070839
Mayr, E. (1982). The growth of biological thought: diversity, evolution, and inheritance. Belknap Press, Cambridge, MA
Luria, S.E., Delbruck, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 28. 491–511. https://doi:10.1093/genetics/28.6.491 DOI: https://doi.org/10.1093/genetics/28.6.491
Lederberg, J., Lederberg, E.M. (1952). Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63. 399-406. https://doi:10.1128/jb.63.3.399-406.1952 DOI: https://doi.org/10.1128/jb.63.3.399-406.1952
Rando, O.J., Verstrepen, K.J. (2007). Timescales of Genetic and Epigenetic Inheritance. Cell. 128. 655–668. https://doi:10.1016/j.cell.2007.01.023 DOI: https://doi.org/10.1016/j.cell.2007.01.023
Karginov, F.V., Hannon, G.J. (2010). The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell. 37. 7-19. https://doi:10.1016/j.molcel.2009.12.033 DOI: https://doi.org/10.1016/j.molcel.2009.12.033
Hampton H.G., Watson, B.N.J., P.C. Fineran, (2020). Affiliations expand The arms race between bacteria and their phage foes. Nature. 577 (7790). 327-336. https://doi: 10.1038/s41586-019-1894-8. DOI: https://doi.org/10.1038/s41586-019-1894-8
Koonin, E.V., Wolf, Y.I. (2009). Is evolution Darwinian or/and Lamarckian? Biol. Direct. 4. 42-56. https://doi: 10.1186/1745-6150-4-42 DOI: https://doi.org/10.1186/1745-6150-4-42
Cairns, J., Overbaugh, J., Miller, S. (1988). The origin of mutants. Nature. 335. 142–145. https://doi:10.1038/335142a0 DOI: https://doi.org/10.1038/335142a0
Cairns, J., Foster, P. L. (1991). Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 128. 695–701. https://doi:10.1093/genetics/128.4.695 DOI: https://doi.org/10.1093/genetics/128.4.695
Deaconescu, A.M (2021). Mfd - at the crossroads of bacterial DNA repair, transcriptional regulation and molecular evolvability. Transcription. 12(4). 156-170. https://doi: 10.1080/21541264.2021.1982628. DOI: https://doi.org/10.1080/21541264.2021.1982628
Maslowska, K.H., Makiela-Dzbenska, K., Fijalkowska, I.J. (2019). The SOS System: A Complex and Tightly Regulated Response to DNA Damage. Environ Mol Mutagen. 60(4). 368-384. https://doi:10.1002/em.22267. DOI: https://doi.org/10.1002/em.22267
Roca, A.I., Cox, M.M. (1997). RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic. Acid. Res. Mol. Biol. 56. 129–223. https://doi:10.1016/s0079-6603(08)61005-3 DOI: https://doi.org/10.1016/S0079-6603(08)61005-3
Godoy, V.G., Jarosz, D.F., Simon, S.M., Abyzov, A., Ilyin, V., Walker, G.C. (2007). UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol. Cell. 28. 1058-1128. https://doi:10.1016/j.molcel.2007.10.025 DOI: https://doi.org/10.1016/j.molcel.2007.10.025
Goodman, M.F., McDonald, J.P., Jaszczur, M.M., Woodgate, R. (2016). Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair. 44. 42–50. https://doi.org/10.1016/j.dnarep. DOI: https://doi.org/10.1016/j.dnarep.2016.05.005
Erdem, A.L., Jaszczur, M., Bertram, J.G., Woodgate, R., Cox, M.M., Goodman, M.F. (2014). DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase. Elife. 3. e02384. https://doi.org/10.7554/eLife. DOI: https://doi.org/10.7554/eLife.02384
Robinson, A., McDonald, J.P., Caldas, V.E.A., Patel, M., Wood, E.A., van Oijen, A.M. (2015). Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLOS Genetics 11: e1005482. https://doi.org/10.1371/journal.pgen. DOI: https://doi.org/10.1371/journal.pgen.1005482
Torkelson, J., Harris, R.S., Lombardo, M.J., Nagendran, J., Thulin, C., Rosenberg, S. M. (1997). Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16. 3303–3311. https://doi: 10.1093/emboj/16.11.3303 DOI: https://doi.org/10.1093/emboj/16.11.3303
Sung, H.-M., Yasbin, R.E. (2002). Adaptive, or stationary-phase, mutagenesis,a component of bacterial differentiation in Bacillus subtilis. J. Bacteriol. 184. 5641–5653. https://doi:10.1128/JB.184.20.5641-5653.2002 DOI: https://doi.org/10.1128/JB.184.20.5641-5653.2002
Sung, H.M., Yeamans, G., Ross, C.A., Yasbin, R.E. (2003). Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J. Bacteriol. 185. 2153–2160. https://doi:10.1128/JB.185.7.2153-2160.2003 DOI: https://doi.org/10.1128/JB.185.7.2153-2160.2003
Eymann, C., Homuth, G., Scharf, C., Hecker, M. (2002). Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184. 2500–2520. https://doi:10.1128/JB.184.9.2500-2520.2002 DOI: https://doi.org/10.1128/JB.184.9.2500-2520.2002
Pybus, C., Pedraza-Reyes, M., Ross, C.A., Martin, H., Ona, K., Yasbin, R.E., Robleto, E. (2010). Transcription Associated Mutation in Bacillus subtilis Cells under Stress. J. Bacteriol. 192. 3321-3328. https://doi:10.1128/JB.00354-10 DOI: https://doi.org/10.1128/JB.00354-10
Ross, C., Pybus, C., Pedraza-Reyes, M., Sung, H.M., Yasbin, R.E., Robleto, E. (2006). Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J. Bacteriol. 188. 7512–7520. https://doi:10.1128/JB.00980-06 DOI: https://doi.org/10.1128/JB.00980-06
Le, T.T., Yang, Y., Tan, C., Suhanovsky, M.M., Fulbright, R.M., Wang, M.D. (2018). Mfd dynamically regulates transcription via a release and catch-up mechanism. Cell. 172. 344–357 e15. https://doi: 10.1016/j.cell.2018.06.002. DOI: https://doi.org/10.1016/j.cell.2017.11.017
Ermi, T, Vallin, C., García, A., Bravo, M., Cordero, I., Martin, H., Pedraza-Reyes, M., Robleto, E. (2021). Non-B DNA-forming Motifs promote Mfd-Dependent stationary-phase mutagenesis in bacillus subtilis. Microorganisms. 9(6). 1284. https://doi: 10.3390/microorganisms9061284. DOI: https://doi.org/10.3390/microorganisms9061284
Carvajal-Garcia, J., Samadpour, A.N., Hernandez Viera, A.J., Merrikh, H. (2023). Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc Natl Acad Sci U S A. 120. e2300761120. https://doi: 10.1073/pnas.2300761120. DOI: https://doi.org/10.1073/pnas.2300761120
Million-Weaver, S, Samadpour, A.N., Moreno-Habel, D.A., Nugent, P., Brittnacher, M.J., et al. (2015). An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A. 112. 1096–1105. https://doi: 10.1073/pnas.1416651112. DOI: https://doi.org/10.1073/pnas.1416651112
Paul, S., Million-Weaver, S., Chattopadhyay, S., Sokurenko, E., Merrikh, H. (2013). Accelerated gene evolution through replication-transcription conflicts. Nature. 495. 512–515. https://doi: 10.1038/nature11989. DOI: https://doi.org/10.1038/nature11989
Gomez-Marroquin, M, Martin, H.A., Pepper, A., Girard, M.E., Kidman, A.A., Vallin, C., Yasbin. R.E., Pedraza-Reyes, M., Robleto, E.A. (2016). Stationary-Phase mutagenesis in stressed bacillus subtilis cells operates by Mfd-Dependent mutagenic pathways. Genes (Basel). 7(7). 33. https://doi: 10.3390/genes7070033. DOI: https://doi.org/10.3390/genes7070033
Steele, D.F., Jinks-Robertson, S. (1992). An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics. 132. 9–21. https://doi: 10.1093/genetics/132.1.9. DOI: https://doi.org/10.1093/genetics/132.1.9
Hull, R.M., Cruz, C., Jack, C.V., Houseley, J. (2017). Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol. 15. e2001333. https://doi: 10.1371/journal.pbio.2001333. DOI: https://doi.org/10.1371/journal.pbio.2001333
Todd, R.T., Selmecki, A. (2020). Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. ELife. 9. e58349. https://doi:10.7554/eLife.58349 DOI: https://doi.org/10.7554/eLife.58349
Liu, H., Zhang, J. (2019). Yeast spontaneous mutation rate and spectrum vary with environment. Curr Biol. 29(10). 1584–1591. https://doi: 10.1016/j.cub.2019.03.05 DOI: https://doi.org/10.1016/j.cub.2019.03.054
Сirz, R.T., Chin, J.K., Andes, D.R., Crecy-Lagard, V.D., Craig, W.A., Romesberg F. E. 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 3. e.176. https://doi: 10.1371/journal.pbio.0030176. DOI: https://doi.org/10.1371/journal.pbio.0030176
Zhai, Y, Minnick P.J, Pribis JP, Garcia-Villada L, Hastings PJ, Herman C, Rosenberg SM. (2023). рpGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells. Mol Cell. 83(8).1298-1310.e4. https://doi: 10.1016/j.molcel.2023.03.003 DOI: https://doi.org/10.1016/j.molcel.2023.03.003
Weaver, J.W., Proshkin, S., Duan, W., Epshtein, V., Gowder, M., Bharati. B.K., Afanaseva. E., Mironov. A., Serganov. A., Nudler, E. (2023). Control of Transcription Elongation and DNA Repair by Alarmone ppGpp. Nature Struct Mol Biol. 30(5). 600–607. https://doi: 10.1038/s41594-023-00948-2. DOI: https://doi.org/10.1038/s41594-023-00948-2
Song, L.Y., Goff, M., Davidian, C., Mao, Z., London, M., Lam, K., Yung, M., Miller, J.H. (2016). Mutational consequences of ciprofloxacin in Escherichia coli. Antimicrob. Agents Chemother. 60. 6165–6172. https://doi: 10.1128/AAC.01415-16. DOI: https://doi.org/10.1128/AAC.01415-16
Pomerantz, R.T., Goodman, M.F., O’Donnell, M.E. (2013). DNA polymerases are error-prone at RecA-mediated recombination intermediates. Cell Cycle 12. 2558–2563. https://doi: 10.4161/cc.25691. DOI: https://doi.org/10.4161/cc.25691
Boshoff, H. I., Reed, M. B., Mizrahi, V. (2003). DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell. 113. 183–193. https://doi: 10.1016/s0092-8674(03)00270-8. DOI: https://doi.org/10.1016/S0092-8674(03)00270-8
Gessner, S., Martin, Z.A., Reiche, M.A., Santos, J.A., Dinkele, R., Ramudzuli, A., Dhar, N., Warner, D.F. (2023). Investigating the composition and recruitment of the mycobacterial ImuA’-ImuB-DnaE2 mutasome. Elife. 12. e75628. https://doi: 10.7554/eLife.75628 DOI: https://doi.org/10.7554/eLife.75628
Adefisayo, O.O., Dupuy, P., Nautiyal, A., Bean, J.M., Glickman Michael, S. (2021). Division of labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. Nucleic Acids Research. 49(22). 12805–12819 https://doi: 10.1093/nar/gkab1169. DOI: https://doi.org/10.1093/nar/gkab1169
Dupuy, P., Ghosh, S., Adefisayo, O., Buglino, J., Shuman, S., Glickman, M.S.. (2022). Distinctive roles of translesion polymerases DINB1 and dnae2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nature Communications. 13. 4493. https://doi.org/10.1038/s41467-022-32022-8. DOI: https://doi.org/10.1038/s41467-022-32022-8
Ragheb, M.N., Thomason, M.K., Hsu, C., Nugent, P., Gage, J., Samadpour, A.N., Kariisa, A., Merrikh, C.N., Miller, S.I., Sherman, D.R., Merrikh, H. (2019). Inhibiting the evolution of antibiotic resistance. Molecular Cell. 73. 157–165. https://doi: 10.1016/j.molcel.2018.10.015. DOI: https://doi.org/10.1016/j.molcel.2018.10.015
Alam, M.K., Alhhazmi, A., DeCoteau, J.F., Luo, Y., Geyer, C.R. (2016). RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem. Biol. 23. 381–391. https://doi: 10.1016/j.chembiol.2016.02.010. DOI: https://doi.org/10.1016/j.chembiol.2016.02.010
Erill, I., Campoy, S., Barbé, J. (2007). Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev. 31. 637–656. https://doi: 10.1111/j.1574-6976.2007.00082. DOI: https://doi.org/10.1111/j.1574-6976.2007.00082.x
Mo, C.Y., Manning, S.A., Roggiani, M., Culyba, M.J., Samuels, A.N., Sniegowski, P.D., Goulian, M., Kohli, R.M. (2016). Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. Msphere. (4). e00163-16. https://doi: 10.1128/mSphere.00163-16. DOI: https://doi.org/10.1128/mSphere.00163-16
Bellio, P., Brisdelli, F., Perilli, M., Sabatini, A., Bottoni, C., Segatore, B. (2014). Curcumin inhibits the SOS response induced by levofloxacin in Escherichia coli. Phytomedicine. 21(4). 430–434. https://doi:10.1016/j.phymed.2013.10.011. DOI: https://doi.org/10.1016/j.phymed.2013.10.011
Wigle, T.J., Singleton, S.F. (2007). Directed molecular screening for RecA ATPase inhibitors. Bioorgan Med Chem Lett. 17(12). 3249–3253. https:// doi:10.1016/j.bmcl.2007.04.013. DOI: https://doi.org/10.1016/j.bmcl.2007.04.013
Ojha. D., Patil, K.N. (2019). p-coumaric acid inhibits the Listeria monocytogenes RecA protein functions and SOS response: an antimicrobial target. Biochem Biophys Res Commun. 517(4). 655–661. doi:10.1016/j.bbrc.2019.07.093. DOI: https://doi.org/10.1016/j.bbrc.2019.07.093
Yang, Y., Fix, D. (2006). Genetic analysis of the anti-mutagenic effect of genistein in Escherichia coli. Mutat. Res. 600. 193–206. https://doi: 10.1016/j.mrfmmm.2006.05.024. DOI: https://doi.org/10.1016/j.mrfmmm.2006.05.024
Peng, Q., Zhou, S., Yao, F., Hou, B., Huang, Y., Hua, D. (2011). Baicalein suppresses the SOS response system of Staphylococcus Aureus induced by ciprofloxacin. Cell Physiol Biochem. 28(5). 1045–1050. https://doi:10.1159/000335791. DOI: https://doi.org/10.1159/000335791
Lee, A.M., Ross, C.T., Zeng, B.B., Singleton, S.F. (2005). A molecular target for suppression of the evolution of antibiotic resistance: inhibition of the Escherichia coli RecA protein by N6-(1-naphthyl)-ADP. J Med Chem. 48(17). 5408–5411. https://doi:10.1021/jm050113z. DOI: https://doi.org/10.1021/jm050113z
Sexton, J.Z., Wigle, T.J., He, Q., Hughes, M.A., Smith, G.R., Singleton, S.F. (2010). Novel inhibitors of E. coli RecA ATPase activity. Curr Chem Genomics. 4. 34–42. https://doi:10.2174/1875397301004010034. DOI: https://doi.org/10.2174/1875397301004010034
Bunnell, B.E., Escobar, J.F., Bair, K.L., Sutton, M.D., Crane, J.K. (2017). Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. Plos ONE. 12(5). https://doi:10.1371/journal.pone.0178303. DOI: https://doi.org/10.1371/journal.pone.0178303
Yakimov, A., Pobegalov, G., Bakhlanova, I., Khodorkovskii, M., Petukhov, M., Baitin, D. (2017). Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide. Nucl Acids Res. 45(16). 9788–9796. https://doi:10.1093/nar/gkx687. DOI: https://doi.org/10.1093/nar/gkx687
Merrikh, H., Kohli, R.M. (2020). Targeting evolution to inhibit antibiotic resistance. FEBS J. 287. 4341–4353. https://doi: 10.1111/febs.15370 DOI: https://doi.org/10.1111/febs.15370
Mo, C.Y., Culyba, M.J., Selwood, T., Kubiak, J.M., Hostetler, Z.M., Jurewicz, A. J., Kohli, R.M. (2018). Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic–industry partnership. ACS Infect. Dis. 4. 349–359. https://doi: 10.1021/acsinfecdis.7b00122 DOI: https://doi.org/10.1021/acsinfecdis.7b00122
Jaramillo, A.V.C., Cory, M.B., Li, A., Kohli, R.M., Wuest, W.M. (2022). Exploration of inhibitors of the bacterial LexA repressor-protease. Bioorg. Med. Chem. Lett. 65. 128702. https://doi: 10.1016/j.bmcl.2022.128702 DOI: https://doi.org/10.1016/j.bmcl.2022.128702
Lu, T.K., Collins, J.J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. U. S. A. 106, 4629–4634. https://doi: 10.1073/pnas.0800442106. DOI: https://doi.org/10.1073/pnas.0800442106
Zhai. Y., Pribis, S.W. Dooling, J.P., Garcia-Villada, L., Minnick, P.J., Xia J., Liu, J., …, Rosenberg, S.M. (2023). Drugging evolution of antibiotic resistance at a regulatory network hub. Sci Adv. 9(25), eadg0188. https://doi: 10.1126/sciadv.adg0188. DOI: https://doi.org/10.1126/sciadv.adg0188
Johnson, A. E., Bracey H., Viera, A.J.H., Carvajal-Garcia, J., Simsek, E.N., Kim, K., Merrikh, H. (2022). A small molecule that inhibits the evolution of antibiotic resistance. BioRxiv [Preprint] https://doi.org/10.1101/2022.09.26.509600 DOI: https://doi.org/10.1101/2022.09.26.509600
Lopes da Rosa, J., Bajaj, V., Spoonamore, J., Kaufman, P.D. (2013). A small molecule inhibitor of fungal histone acetyltransferase Rtt109. Bioorg Med Chem Lett.; 23(10), 2853–2859. https://doi.org/10.1016/j. Bmcl.2013.03.112 DOI: https://doi.org/10.1016/j.bmcl.2013.03.112
Recacha, E., Machuca, J., de Alba, P.D., Ramos-Güelfo, M., Docobo-Pérez, F., Rodriguez-Beltrán, J. (2017). Quinolone resistance reversion by targeting the SOS response. MBio. 8(5). e00971–17. https://doi: 10.1128/mbio.00971-17. DOI: https://doi.org/10.1128/mBio.00971-17
Pinilla-Redondo, R., Shehreen, S., Marino, N.D., Fagerlund, R.D., Brown, C.M., Sørensen, S.J., Fineran, P.C., Bondy-Denomy, J. (2020). Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat. Commun. 11, 5652. https://doi: 10.1038/s41467-020-19415-3. DOI: https://doi.org/10.1038/s41467-020-19415-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 В. В. Мінухін, Т. Ю. Колотова, Н. І. Скляр
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0