ACARICIDES AND THEIR APPLICATIONS

(PART 1)

Authors

DOI:

https://doi.org/10.11603/1681-2727.2023.2.14101

Keywords:

ticks, tick infections, acaricidal drugs, resistance to acaricides

Abstract

SUMMARY. Tick-borne infections are becoming more common. They pose a problem not only in human medicine, but also in veterinary medicine and agriculture. At the same time, the fight against ticks, which serve as a reservoir and carrier of pathogens of many human and animal diseases, is far from being resolved. The purpose of this literature review was to analyze modern achievements in the creation and use of acaricidal drugs, which has not yet been sufficiently covered in Ukraine.

 The article provides classifications of the acaricidal drugs used, according to their effect on ticks at different stages of development, chemical composition, mechanism of harmful action, and other criteria. The characteristics of the main acaricides belonging to the relevant chemical groups and their effectiveness against ticks of certain genera are given. The possible harmful effects of these compounds on humans, animals and the environment are considered. The global experience of using certain drugs in the medical and veterinary fields, a number of practical recommendations aimed at achieving the maximum acaricidal effect are summarized. The problem of tick resistance to acaricides, its causes and methods of prevention and overcoming are discussed in detail. Alternative methods of tick control are briefly considered. On the basis of dictates from the literature, practical advice on the rational use of modern acaricides was compiled.

Author Biographies

M. A. Andreychyn, I. Horbachevsky Ternopil National Medical University

Academician of NAMS of Ukraine, professor, the Head of the Department of Infectious Diseases with Epidemiology, Dermatology and Venerology, I. Horbachevsky Ternopil National Medical University

S. I. Klymnyuk, I. Horbachevsky Ternopil National Medical University

professor, MD, the Head of the Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University

L. B. Romanyuk, I. Horbachevsky Ternopil National Medical University

PhD, Associated Professor at the Department of Microbiology, Virology and Immunology I. Horbachevsky Ternopil National Medical University

References

Andreychyn, M. A., Korda, M. M. (2021). Lyme-borreliosis: monograph. Ternopil: TNMU. [in Ukrainian].

Parish, L. C. (2011). Andrews’ diseases of the skin: clinical dermatology. JAMA, 306(2), 213-213. DOI: https://doi.org/10.1001/jama.2011.968

ВСРС Compendium of Pesticide Common Names Acaricides. (n.d.). bcpcpesticidecompendium.org. Retrieved from http://www.bcpcpesticidecompendium.org/class_acaricides.html

Dekeyser, M. A. (2005). Acaricide mode of action. Pest Management Science: Formerly Pesticide Science, 61(2), 103-110. DOI: https://doi.org/10.1002/ps.994

ВСРС Compendium of Pesticide Common Names Acaricides. (n.d.). bcpcpesticidecompendium.org. Retrieved from http://www.bcpcpesticidecompendium.org/class_acaricides.html

IRAC (Acaricides Resistance Action Conmittee). Acaricides mode of action clsassification. (n.d.). google.com. Retrieved from https://www.google.com/search?q=acaricides+CHS1&bih=394&biw=720&hl=en&ei=mYcdY9arKLKA9u8PpOSwGA&ved=0ahUKEwiW3OGylYz6AhUygP0HHSQyDAMQ4dUDCA4&uact=5&oq=acaricides+CHS1&gs_lcp=Cgdnd3Mtd2l6EAMyBQgAEKIEMgUIABCiBDIFCAAQogQyBQgAEKIEMgcIABAeEKIEOgUIABCABDoHCAAQgAQQCjoGCAAQHhAHOgQIABAKOggIABAeEAgQBzoICAAQHhAHEAU6BAgAEA1KBAhBGABKBAhGGABQAFiWV2CJc2gAcAF4AIABlQGIAcwLkgEEMC4xMpgBAKABAqABAcABAQ&sclient=gws-wiz

Jayaraj, R., Megha, P., and Sreedev, P. (2016). Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment. Interdiscip. Toxicol, 9, 90-100. doi: 10.1515/intox-2016-0012 DOI: https://doi.org/10.1515/intox-2016-0012

Ravindran, R., Jyothimol, G., Amithamol, K. K., Sunil, A. R., Chandrasekhar, L., Lenka, D. R., et al. (2018). In Vitro Efficacy of Amitraz, Coumaphos, Deltamethrin and Lindane Against Engorged Female Rhipicephalus (Boophilus) Annulatus and Haemaphysalis Bispinosa Ticks. Exp. Appl. Acarol, 75, 241-253. doi: 10.1007/s10493-018-0262y DOI: https://doi.org/10.1007/s10493-018-0262-y

Beugnet, F., and Franc, M. (2012). Insecticide and Acaricide Molecules and/or Combinations to Prevent Pet Infestation by Ectoparasites. Trends Parasitol, 28, 267-279. doi: 10.1016/j.pt.2012.04.004 DOI: https://doi.org/10.1016/j.pt.2012.04.004

Graf, J. F., Gogolewski, R., Leach-Bing, N., Sabatini, G. A., Molento, M. B., Bordin, E. L., et al. (2004). Tick Control: An Industry Point of View. Parasitology, 129, S427-S442. doi: 10.1017/S0031182004006079 DOI: https://doi.org/10.1017/S0031182004006079

Hope, M., Menzies, M., and Kemp, D. (2010). Identification of a Dieldrin Resistance-Associated Mutation in Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae). J. Econ. Entomol, 103, 1355-1359. doi: 10.1603/EC09267 DOI: https://doi.org/10.1603/EC09267

Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K., and Mita, T. (2010). The Antiparasitic Isoxazoline A1443 is a Potent Blocker of Insect Ligand-Gated Chloride Channels. Biochem. Biophys. Res. Commun, 391, 744-749. doi: 10.1016/ j.bbrc.2009.11.131 DOI: https://doi.org/10.1016/j.bbrc.2009.11.131

Ffrench-Constant, R. H., Anthony, N., Aronstein, K., Rocheleau, T., and Stilwell, G. (2000). Cyclodiene Insecticide Resistance: From Molecular to Population Genetics. Annu. Rev. Entomol, 45, 449-466. doi: 10.1 146/ annurev.ento.45.1.449 DOI: https://doi.org/10.1146/annurev.ento.45.1.449

Corley, S. W., Piper, E. K., and Jonsson, N. N. (2012). Generation of Full-Length cDNAs for Eight Putative GPCnR From the Cattle Tick, R. Microplus Using a Targeted Degenerate PCR and Sequencing Strategy. PLos One, 7, e32480. doi: 10.1371/journal.pone.0032480 DOI: https://doi.org/10.1371/journal.pone.0032480

L’Hostis M., Seegers H. Tick-borne parasitic diseases in cattle: Current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Vet. Res, 2002;33:599–611 doi: 10.1051/vetres:2002041 DOI: https://doi.org/10.1051/vetres:2002041

Holan, G. (1969). New Halocyclopropane Insecticides and the Mode of Action of DDT. Nature, 221, 1025-1029. doi: 10.1038/2211025a0 DOI: https://doi.org/10.1038/2211025a0

Shaw, R. D. (1970). Tick Control on Domestic Animals. II. The Effect of Modern Methods of Treatment. Trop. Sci, 12, 29-36.

Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J., and Iqbal, Z. (2014). Acaricide Resistance in Cattle Ticks and Approaches to Its Management: The State of Play. Vet. Parasitol, 203, 6-20. doi: 10.1016/j.vetpar.2014.03.006 DOI: https://doi.org/10.1016/j.vetpar.2014.03.006

Adeyinka, A., Muco, E., and Pierre, L. (2018). Organophosphates (Treasure Island (FL: StatPearls Publishing). Retrieved from https://pubmed.ncbi.nlm.nih.gov/29763035/

Trapaga, B. J. (1989). The Campaign Against Boophilus Microplus in Mexico, Benefit, Problems and Prospects (Mexico: Animal production and health. Food and Agricultural Organization), FAO Animal Production and Health, 75, 24–48.Google Scholar

Rosario-Cruz, R., Almazan, C., Miller, R. J., Dominguez-Garcia, D. I., Hernandez- Ortiz, R., and de la Fuente, J. (2009). Genetic Basis and Impact of Tick Acaricide Resistance. Front. Biosci, 14, 2657-2665. doi: 10.2741/3403 DOI: https://doi.org/10.2741/3403

Baker, J. A. F., Janet, O., and Robertson, W. D. (1979). Ixodicidal Resistance in Boophilus Microplus (Canestrini) in the Republic of South Africa and Transkei. J. S. Afr. Vet. Assoc, 50, 296-301. https://pubmed.ncbi.nlm.nih.gov/553968/

Ortiz, E. M., Santamaría, V. M., Ortiz, N. A., Soberanes, C. N., Osorio, M. J., Franco, B. R., ... & Fragoso, S. H. (1995). Characterization of Boophilus microplus resistance to ixodicides in México. Seminario internacional de Parasitología Animal Acapulco, Gro. México, 58-66.

Rosario-Cruz, R., Guerrero, F. D., Miller, R. J., Rodriguez-Vivas, R. I., Dominguez- Garcia, D. I., Cornel, A. J. (2005). Roles Played by Esterase Activity and by a Sodium Channel Mutation Involved in Pyrethroid Resistance in Populations of Boophilus Microplus (Acari: Ixodidae) Collected From Yucatan, Mexico. J. Med. Entomol, 42, 1020-1025. doi: 10.1093/jmedent/ 42.6.1020 DOI: https://doi.org/10.1093/jmedent/42.6.1020

Saldivar, L., Guerrero, F. D., Miller, R. J., Bendele, K. G., Gondro, C., and Brayton, K. A. (2008). Microarray Analysis of Acaricide-Inducible Gene Expression in the Southern Cattle Tick, Rhipicephalus (Boophilus) Microplus. Insect Mol. Biol, 17, 597-606. doi: 10.1111/j.1365-2583.2008.00831.x DOI: https://doi.org/10.1111/j.1365-2583.2008.00831.x

Foil, L. D., Coleman, P., Eisler, M., Fragoso-Sanchez, H., Garcia-Vazquez, Z., Guerrero, F. D., et al. (2004). Factors That Influence the Prevalence of Acaricide Resistance and Tick-Borne Diseases. Vet. Parasitol, 125, 163-181. doi: 10.1016/j.vetpar.2004.05.012

Chattopadhyay, A., Bhatnagar, N. B., and Bhatnagar, R. (2004). Bacterial Insecticidal Toxins. Crit. Rev. Microbiol, 30, 33-54. doi: 10.1080/ 10408410490270712 DOI: https://doi.org/10.1080/10408410490270712

Kwong, T. C. (2002). Organophosphate Pesticides: Biochemistry and Clinical Toxicology. Ther. Drug Monit, 24, 144-149. doi: 10.1097/00007691­200202000-00022 DOI: https://doi.org/10.1097/00007691-200202000-00022

Collombet, J. M. (2011). Nerve Agent Intoxication: Recent Neuropathophysiological Findings and Subsequent Impact on Medical Management Prospects. Toxicol. Appl. Pharmacol, 255, 229-241. doi: 10.1016/j.taap.2011.07.003 DOI: https://doi.org/10.1016/j.taap.2011.07.003

Temeyer, K. B., Olafson, P. U., Brake, D. K., Tuckow, A. P., Li, A. Y., and de Leon, A. A. P. (2013). Acetylcholinesterase of Rhipicephalus (Boophilus) Microplus and Phlebotomus Papatasi: Gene Identification, Expression, and Biochemical Properties of Recombinant Proteins. Pestic. Biochem. Physiol, 106, 118-123. doi: 10.1016/j.pestbp.2013.01.005 DOI: https://doi.org/10.1016/j.pestbp.2013.01.005

Temeyer, K. B., Pruett, J. H., Olafson, P. U., and Chen, A. C. (2007). R86Q, a Mutation in BmAChE3 Yielding a Rhipicephalus Microplus Organophosphate­Insensitive Acetylcholinesterase. J. Med. Entomol, 44, 1013-1018. doi: 10.1093/ jmedent/44.6.1013

Kumar, R. (2019). Molecular Markers and Their Application in the Monitoring of Acaricide Resistance in Rhipicephalus Microplus. Exp. Appl. Acarol, 78, 149-172. doi: 10.1007/s10493-019-00394-0 DOI: https://doi.org/10.1007/s10493-019-00394-0

Villarino, M. A., Waghela, S. D., and Wagner, G. G. (2001). Histochemical Localization of Esterases in the Integument of the Female Boophilus Microplus (Acari: Ixodidae) Tick. J. Med. Entomol. 38, 780-782. doi: 10.1603/0022-2585-38.6.780 DOI: https://doi.org/10.1603/0022-2585-38.6.780

Pruett, J. H. (2002). Comparative Inhibition Kinetics for Acetylcholinesterases Extracted From Organophosphate Resistant and Susceptible Strains of Boophilus Microplus (Acari: Ixodidae). J. Econ. Entomol, 95, 1239-1244. doi: 10.1603/0022-0493-95.6.1239 DOI: https://doi.org/10.1603/0022-0493-95.6.1239

de Oliveira Souza Higa, L., Garcia, M. V., Barros, J. C., Koller, W. W., and Andreotti, R. (2015). Acaricide Resistance Status of the Rhipicephalus Microplus in Brazil: A Literature Overview. Med. Chem, 5, 326-333. doi: 10.4172/2161-0444.1000281 DOI: https://doi.org/10.4172/2161-0444.1000281

Baxter, G. D., and Barker, S. C. (1998). Acetylcholinesterase cDNA of the Cattle Tick, Boophilus Microplus: Characterisation and Role in Organophosphate Resistance. Insect Biochem. Mol. Biol, 28, 581-589. doi: 10.1016/S0965-1748 (98)00034-4 DOI: https://doi.org/10.1016/S0965-1748(98)00034-4

Baxter, G. D., and Barker, S. C. (2002). Analysis of the Sequence and Expression of a Second Putative Acetylcholinesterase cDNA From Organophosphate- Susceptible and Organophosphate-Resistant Cattle Ticks. Insect Biochem. Mol. Biol, 32, 815-820. doi: 10.1016/S0965-1748(01)00168-0 DOI: https://doi.org/10.1016/S0965-1748(01)00168-0

Temeyer, K. B., Olafson, P. U., and Miller, R. J. (2009). Genotyping Mutations in BmAChE3: A Survey of Organophosphate-Resistant and-Susceptible Strains of Rhipicephalus (Boophilus) Microplus. J. Med. Entomol, 46, 1355-1360. doi: 10.1603/033.046.0614 DOI: https://doi.org/10.1603/033.046.0614

Temeyer, K. B., Pruett, J. H., Olafson, P. U., and Chen, A. C. (2007). R86Q, a Mutation in BmAChE3 Yielding a Rhipicephalus Microplus Organophosphate­Insensitive Acetylcholinesterase. J. Med. Entomol, 44, 1013-1018. doi: 10.1093/ jmedent/44.6.1013 DOI: https://doi.org/10.1093/jmedent/44.6.1013

Chen A. C., He H., Davey R. B. (2007). Mutations in a Putative Octopamine Receptor Gene in Amitraz-Resistant Cattle Ticks. Vet. Parasitol, 148, 379–383. doi: 10.1016/j.vetpar.2007.06.026 DOI: https://doi.org/10.1016/j.vetpar.2007.06.026

Evans, P. D., and Gee, J. D. (1980). Action of Formamidine Pesticides on Octopamine Receptors. Nature, 287, 60-62. doi: 10.1038/287060a0

Jonsson, N. N., Klafke, G., Corley, S. W., Tidwell, J., Berry, C. M., and Koh-Tan, H. H. (2018). Molecular Biology of Amitraz Resistance in Cattle Ticks of the Genus Rhipicephalus. Front. Biosci. (Landmark). 23, 796-810. doi: 10.2741/ 4617 DOI: https://doi.org/10.2741/4617

Evans, P. D., & Gee, J. D. (1980). Action of formamidine pesticides on octopamine receptors. Nature, 287(5777), 60-62. DOI: https://doi.org/10.1038/287060a0

Pohl, P. C., Klafke, G. M., Carvalho, D. D., Martins, J. R., Daffre, S., da Silva Vaz, I.Jr., et al. (2011). ABC Transporter Efflux Pumps: A Defense Mechanism Against Ivermectin in Rhipicephalus (Boophilus) Microplus. Int. J. Parasitol, 41, 1323-1333. doi: 10.1016/j.ijpara.2011.08.004

Baron, S., van der Merwe, N. A., Madder, M., and Maritz-Olivier, C. (2015). SNP Analysis Infers That Recombination Is Involved in the Evolution of Amitraz Resistance in Rhipicephalus Microplus. PLos One, 10, e0131341. doi: 10.1371/ journal.pone.0131341

Baron, S., van der Merwe, N. A., Madder, M., & Maritz-Olivier, C. (2015). SNP analysis infers that recombination is involved in the evolution of amitraz resistance in Rhipicephalus microplus. PloS one, 10(7), e0131341. doi: 10.1371/ journal.pone.0131341 DOI: https://doi.org/10.1371/journal.pone.0131341

Pohl, P. C., Klafke, G. M., Carvalho, D. D., Martins, J. R., Daffre, S., da Silva Vaz, I.Jr., et al. (2011). ABC Transporter Efflux Pumps: A Defense Mechanism Against Ivermectin in Rhipicephalus (Boophilus) Microplus. Int. J. Parasitol, 41, 1323-1333. doi: 10.1016/j.ijpara.2011.08.004

Hollingworth, R. M. (1976). Chemistry, Biological Activity, and Uses of Formamidine Pesticides. Environ. Health Perspect, 14, 57-69. doi: 10.1289/ ehp.761457 DOI: https://doi.org/10.1289/ehp.761457

Dudai, Y., Buxbaum, J., Corfas, G., and Ofarim, M. (1987). Formamidines Interact With Drosophila Octopamine Receptors, Alter the Flies’ Behavior and Reduce Their Learning Ability. J. Comp. Physiol, 161, 739-746. doi: 10.1007/ BF00605015 DOI: https://doi.org/10.1007/BF00605015

Schuntner, C. A., and Thompson, P. G. (1977). Inhibition of a Carbaryl Oxidising Enzyme as the Primary Lesion in the Lethal Action of Formamidines in Boophilus Microplus. Aust. J. Entomol, 15, 388-388. doi: 10.1111/j.1440- 6055.1976.tb01721.x DOI: https://doi.org/10.1111/j.1440-6055.1976.tb01721.x

Davey, R. B., Ahrens, E. H., and George, J. E. (1984). Efficacy of Sprays of Amitraz Against Boophilus Ticks on Cattle. Prev. Vet. Med, 2, 691-698. doi: 10.1016/ 01675877(84)90014-X DOI: https://doi.org/10.1016/0167-5877(84)90014-X

US Environmental Protection Agency [USEPA]. (2006). Reregistration Eligibility Decision (RED) for Permethrin. archive.epa.gov. Retrieved from https://archive.epa.gov/pesticides/reregistration/web/pdf/permethrin_amended_red.pdf

Davies, T. G. E., Field, L. M., Usherwood, P. N. R., and Williamson, M. S. (2007). DDT, Pyrethrins, Pyrethroids and Insect Sodium Channels. IUBMB Life, 59, 151-162. doi: 10.1080/15216540701352042 DOI: https://doi.org/10.1080/15216540701352042

Soderlund, D. M., and Bloomquist, J. R. (1989). Neurotoxic Mechanisms of Pyrethroid Action. Ann. Rev. Entomol, 34, 77. doi: 10.1146/ annurev.en.34.010189.000453 DOI: https://doi.org/10.1146/annurev.en.34.010189.000453

Bonnefoy, X., Kampen, H., & Sweeney, K. (2008). Public health significance of urban pests. World Health Organization.

Kasai, S. (2004). Role of Cytochrome P450 in Mechanism of Pyrethroid Resistance. J. Pestic. Sci, 29, 234-239. doi: 10.1584/jpestics.29.234 DOI: https://doi.org/10.1584/jpestics.29.234

Cosslo-Bayugar, R., Martinez-Ibanez, F., Aguilar-Diaz, H., and Miranda-Miranda, E. (2018). Pyrethroid Acaricide Resistance Is Proportional to P-450 Cytochrome Oxidase Expression in the Cattle Tick Rhipicephalus Microplus. BioMed. Res. Int, 1-6. doi: 10.1155/2018/8292465 DOI: https://doi.org/10.1155/2018/8292465

Enayati, A. A., Asgarian, F., Amouei, A., Sharif, M., Mortazavi, H., Boujhmehrani, H., et al. (2010). Pyrethroid Insecticide Resistance in Rhipicephalus Bursa (Acari, Ixodidae). Pestic. Biochem. Physiol, 97, 243-248. doi: 10.1016/ j.pestbp.2010.03.003 DOI: https://doi.org/10.1016/j.pestbp.2010.03.003

Sharma, N., Singh, V., KP, S., Solanki, V., and Gupta, J. P. (2018). Comparative Resistance Status of Hyalomma Anatolicum and Rhipicephalus (Boophilus) Microplus Ticks Against Synthetic Pyrethroids (Deltamethrin and Cypermethrin) From Banaskantha, Gujarat, India. Int. J. Acarol, 44, 268­275. doi: 10.1080/01647954.2018.1513559

Godara, R., Katoch, R., Rafiqi, S. I., Yadav, A., Nazim, K., Sharma, R., et al. (2019). Synthetic Pyrethroid Resistance in Rhipicephalus (Boophilus) Microplus Ticks From North-Western Himalayas, India. Trop. Anim. Health Prod, 51, 1203­1208. doi: 10.1007/s11250-019-01810-8 DOI: https://doi.org/10.1007/s11250-019-01810-8

Sharma, N., Singh, V., KP, S., Solanki, V., and Gupta, J. P. (2018). Comparative Resistance Status of Hyalomma Anatolicum and Rhipicephalus (Boophilus) Microplus Ticks Against Synthetic Pyrethroids (Deltamethrin and Cypermethrin) From Banaskantha, Gujarat, India. Int. J. Acarol, 44, 268-275. doi: 10.1080/01647954.2018.1513559 DOI: https://doi.org/10.1080/01647954.2018.1513559

Davey, R. B., Ahrens, E. H., and George, J. E. (1989). Ovicidal Activity of Topically Applied Acaricides Against Eggs of the Southern Cattle Tick (Acari: Ixodidae). J. Med. Entomol, 82, 539-542. doi: 10.1093/jee/82.2.539 DOI: https://doi.org/10.1093/jee/82.2.539

Schleier, J. J.III, and Peterson, R. K. (2011). Pyrethrins and Pyrethroid Insecticides. Green Trends Insect Control, 11, 94-131. doi: 10.1039/9781849732901-00094 DOI: https://doi.org/10.1039/BK9781849731492-00094

Dong, K. (2007). Insect Sodium Channels and Insecticide Resistance. Invert. Neurosci, 7, 17-30. doi: 10.1007/s10158-006-0036-9 DOI: https://doi.org/10.1007/s10158-006-0036-9

Lees, K., and Bowman, A. S. (2007). Tick Neurobiology: Recent Advances and the Post-Genomic Era. Invert. Neurosci, 7, 183-198. doi: 10.1007/s10158-007- 0060-4 DOI: https://doi.org/10.1007/s10158-007-0060-4

Shafer, T. J., Meyer, D. A., and Crofton, K. M. (2005). Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs. Environ. Health Perspect, 113, 123-136. doi: 10.1289/ehp.7254 DOI: https://doi.org/10.1289/ehp.7254

Shoop, W. L., Mrozik, H., and Fisher, M. H. (1995). Structure and Activity of Avermectins and Milbemycins in Animal Health. Vet. Parasitol, 59, 139-156. doi: 10.1016/0304-4017(94)00743-V DOI: https://doi.org/10.1016/0304-4017(94)00743-V

Rodriguez-Vivas, R. I., Jonsson, N. N., and Bhushan, C. (2018). Strategies for the Control of Rhipicephalus Microplus Ticks in a World of Conventional Acaricide and Macrocyclic Lactone Resistance. Parasitol. Res, 117, 3-29. doi: 10.1007/s00436-017-5677-6 DOI: https://doi.org/10.1007/s00436-017-5677-6

Vercruysse, J., & Rew, R. S. (Eds.). (2002). Macrocyclic lactones in antiparasitic therapy. CAB International. DOI: https://doi.org/10.1079/9780851996172.0000

Perez-Cogollo, L. C., Rodriguez-Vivas, R. I., Ramirez-Cruz, G. T., and Rosado- Aguilar, J. A. (2010). Survey of Rhipicephalus Microplus Resistance to Ivermectin at Cattle Farms With History of Macrocyclic Lactones Use in Yucatan, Mexico. Vet. Parasitol, 172, 109-113. doi: 10.1016/ j.vetpar.2010.04.030

Perez-Cogollo, L. C., Rodriguez-Vivas, R. I., Ramirez-Cruz, G. T., and Rosado- Aguilar, J. A. (2010). Survey of Rhipicephalus Microplus Resistance to Ivermectin at Cattle Farms With History of Macrocyclic Lactones Use in Yucatan, Mexico. Vet. Parasitol, 172, 109-113. doi: 10.1016/ j.vetpar.2010.04.030 DOI: https://doi.org/10.1016/j.vetpar.2010.04.030

Klafke, G. M., de Albuquerque, T. A., Miller, R. J., and Schumaker, T. T. S. (2010). Selection of an Ivermectin-Resistant Strain of Rhipicephalus Microplus (Acari: Ixodidae) in Brazil. Vet. Parasitol, 168, 97-104. doi: 10.1016/ j.vetpar.2009.10.003 DOI: https://doi.org/10.1016/j.vetpar.2009.10.003

Rodrlguez-Vivas, R. I., Miller, R. J., Ojeda-Chi, M. M., Rosado-Aguilar, J. A., Trinidad-Martlnez, I. C., and de Leon, A. P. (2014). Acaricide and Ivermectin Resistance in a Field Population of Rhipicephalus Microplus (Acari: Ixodidae) Collected From Red Deer (Cervus Elaphus) in the Mexican Tropics. Vet. Parasitol, 200, 179-188. doi: 10.1016/j.vetpar.2013.11.025 DOI: https://doi.org/10.1016/j.vetpar.2013.11.025

El-Ashram, S., Aboelhadid, S. M., Kamel, A. A., Mahrous, L. N., and Fahmy, M. M. (2019). First Report of Cattle Tick Rhipicephalus (Boophilus) Annulatus in Egypt Resistant to Ivermectin. Insects, 10, 404. doi: 10.3390/insects10110404

Singh, N. K., Singh, H., Prerna, M., and Rath, S. S. (2015b). First Report of Ivermectin Resistance in Field Populations of Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae) in Punjab Districts of India. Vet. Parasitol, 214, 192-194. doi: 10.1016/j.vetpar.2015.09.014 DOI: https://doi.org/10.1016/j.vetpar.2015.09.014

Sajid, M. S., Iqbal, Z., Khan, M. N., and Muhammad, G. (2009). In Vitro and In Vivo Efficacies of Ivermectin and Cypermethrin Against the Cattle Tick Hyalomma Anatolicum Anatolicum (Acari: Ixodidae). Parasitol. Res, 105, 1133-1138. doi: 10.1007/s00436-009-1538-2 DOI: https://doi.org/10.1007/s00436-009-1538-2

Kamran, K., Ali, A., Villagra, C. A., Bazai, Z. A., Iqbal, A., and Sajid, M. S. (2021). Hyalomma Anatolicum Resistance Against Ivermectin and Fipronil is Associated With Indiscriminate Use of Acaricides in Southwestern Balochistan, Pakistan. Parasitol. Res, 120, 15-25. doi: 10.1007/s00436-020- 06981-0 DOI: https://doi.org/10.1007/s00436-020-06981-0

Rodrlguez-Vivas, R. I., Arieta-Roman, R. J., Perez-Cogollo, L. C., Rosado-Aguilar, J. A., Ramlrez-Cruz, G. T., and Basto-Estrella, G. (2010). Uso De Lactonas Macroclclicas Para El Control De La Garrapata Rhipicephalus (Boophilus) Microplus En El Ganado Bovino. Arch. Med. Vet, 42, 115-123. doi: 10.4067/ S0301-732X2010000300002.. DOI: https://doi.org/10.4067/S0301-732X2010000300002

Cully, D. F., Vassilatis, D. K., Liu, K. K., Paress, P. S., van der Ploeg, L. H., Schaeffer, J. M., et al. (1994). Cloning of an Avermectin-Sensitive Glutamate-Gated Chloride Channel From Caenorhabditis Elegans. Nature, 371, 707-711. doi: 10.1038/371707a0 DOI: https://doi.org/10.1038/371707a0

Pohl, P. C., Klafke, G. M., Carvalho, D. D., Martins, J. R., Daffre, S., da Silva Vaz, I.Jr., et al. (2011). ABC Transporter Efflux Pumps: A Defense Mechanism Against Ivermectin in Rhipicephalus (Boophilus) Microplus. Int. J. Parasitol. 41, 1323-1333. doi: 10.1016/j.ijpara.2011.08.004 DOI: https://doi.org/10.1016/j.ijpara.2011.08.004

El-Ashram, S., Aboelhadid, S. M., Kamel, A. A., Mahrous, L. N., and Fahmy, M. M. (2019). First Report of Cattle Tick Rhipicephalus (Boophilus) Annulatus in Egypt Resistant to Ivermectin. Insects, 10, 404. doi: 10.3390/insects10110404 DOI: https://doi.org/10.3390/insects10110404

McKellar, Q. A., and Benchaoui, H. A. (1996). Avermectins and Milbemycins. J. Vet. Pharmacol. Ther, 19, 331-351. doi: 10.1111/j.1365-2885.1996.tb00062.x DOI: https://doi.org/10.1111/j.1365-2885.1996.tb00062.x

Klafke, G. M., Sabatini, G. A., Thais, A., Martins, J. R., Kemp, D. H., Miller, R. J., et al. (2006). Larval Immersion Tests With Ivermectin in Populations of the Cattle Tick Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae) From State of Sao Paulo, Brazil. Vet. Parasitol, 142, 386-390. doi: 10.1016/ j.vetpar.2006.07.001 DOI: https://doi.org/10.1016/j.vetpar.2006.07.001

Castro-Janer, E., Rifran, L., Gonzalez, P., Niell, C., Piaggio, J., Gil, A., et al. (2011). Determination of the Susceptibility of Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae) to Ivermectin and Fipronil by Larval Immersion Test (LIT) in Uruguay. Vet. Parasitol, 178, 148-155. doi: 10.1016/j.vetpar.2010.12.035 DOI: https://doi.org/10.1016/j.vetpar.2010.12.035

Aguilar-Tipacamu, G., Mosqueda-Gualito, J., Canto-Alarcon, G. J., Klafke, G. M., Arellano-Carvajal, F., Alonso-Diaz, M. M., et al. (2016). Identification of Mutations in the Glutamate-Dependent Chlorine Channel in Rhipicephalus Microplus Resistant and Susceptible to Ivermectins. Sci. Work. Chiapas, 11, 20-26. https://scholar.google.com/scholar_lookup?journal=Sci.+Work.+Chiapas.&title=Identification+of+Mutations+in+the+Glutamate-Dependent+Chlorine+Channel+in+Rhipicephalus+Microplus+Resistant+and+Susceptible+to+Ivermectins&author=G.+Aguilar-Tipacam%C3%BA&author=J.+Mosqueda-Gualito&author=G.+J.+Cant%C3%B3-Alarc%C3%B3n&author=G.+M.+Klafke&author=F.+Arellano-Carvajal&volume=11&publication_year=2016&pages=20-26&

Cole, L. M., Nicholson, R. A., and Casida, J. E. (1993). Action of Phenylpyrazole Insecticides at the GABA-Gated Chloride Channel. Pestic. Biochem. Physiol, 46, 47-54. doi: 10.1006/pest.1993.1035 DOI: https://doi.org/10.1006/pest.1993.1035

Cuore, U., Trelles, A., Sanchis, J., Gayo, V., and Solari, M. A. (2007). First Diagnosis of Resistance to Fipronil in the Common Cattle Tick Boophilus Microplus. Veter. (Montevideo), 42, 35-41. https://www.cabdirect.org/cabdirect/abstract/20073235803

Castro-Janer, E., Rifran, L., Piaggio, J., Gil, A., Miller, R. J., and Schumaker, T. T. S. (2009). In Vitro Tests to Establish LC50 and Discriminating Concentrations for Fipronil Against Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae) and Their Standardization. Vet. Parasitol, 162, 120-128. doi: 10.1016/ j.vetpar.2009.02.013 DOI: https://doi.org/10.1016/j.vetpar.2009.02.013

Miller, R. J., Almazan, C., Ortiz-Estrada, M., Davey, R. B., George, J. E., and De Leon, A. P. (2013). First Report of Fipronil Resistance in Rhipicephalus (Boophilus) Microplus of Mexico. Vet. Parasitol, 191, 97-101. doi: 10.1016/ j.vetpar.2012.08.011 DOI: https://doi.org/10.1016/j.vetpar.2012.08.011

Castro-Janer, E., Martins, J. R., Mendes, M. C., Namindome, A., Klafke, G. M., and Schumaker, T. T. S. (2010). Diagnoses of Fipronil Resistance in Brazilian Cattle Ticks (Rhipicephalus (Boophilus) Microplus) Using In Vitro Larval Bioassays. Vet. Parasitol, 173, 300-306. doi: 10.1016/ j.vetpar.2010.06.036….

Castro-Janer, E., Martins, J. R., Mendes, M. C., Namindome, A., Klafke, G. M., and Schumaker, T. T. S. (2010). Diagnoses of Fipronil Resistance in Brazilian Cattle Ticks (Rhipicephalus (Boophilus) Microplus) Using In Vitro Larval Bioassays. Vet. Parasitol, 173, 300-306. doi: 10.1016/ j.vetpar.2010.06.036…. DOI: https://doi.org/10.1016/j.vetpar.2010.06.036

Lovis, L., Perret, J. L., Bouvier, J., Fellay, J. M., Kaminsky, R., Betschart, B., et al. (2011). A New In Vitro Test to Evaluate the Resistance Level Against Acaricides of the Cattle Tick, Rhipicephalus (Boophilus) Microplus. Vet. Parasitol, 182, 269-280. doi: 10.1016/j.vetpar.2011.06.004 DOI: https://doi.org/10.1016/j.vetpar.2011.06.004

Samed, K. O. C., AYDIN, L., and CETIN, H. (2021). The First Study on Fipronil, Chlorpyrifos-Methyl and Permethrin Resistance in Rhipicephalus Sanguineus Sensu Lato Ticks From Turkey. Int. J. Trop. Insect Sci, 42, 597-602. doi: 10.1007/s42690-021-00578-5 DOI: https://doi.org/10.1007/s42690-021-00578-5

Oudejans, L., Mysz, A., Snyder, E. G., Wyrzykowska-Ceradini, B., Nardin, J., Tabor, D., ... & Lemieux, P. (2020). Remediating indoor pesticide contamination from improper pest control treatments: Persistence and decontamination studies. Journal of hazardous materials, 397, 122743. DOI: https://doi.org/10.1016/j.jhazmat.2020.122743

Reck, J., Klafke, G. M., Webster, A., Dall’Agnol, B., Scheffer, R., Souza, U. A., et al. (2014). First Report of Fluazuron Resistance in Rhipicephalus Microplus: A Field Tick Population Resistant to Six Classes of Acaricides. Vet. Parasitol, 201, 128-136. doi: 10.1016/j.vetpar.2014.01.012 DOI: https://doi.org/10.1016/j.vetpar.2014.01.012

Janer, E. C., Diaz, A., Fontes, F., Baraibar, F., Saporiti, T., and Olhagaray, M. E. (2021). Molecular Survey of Pyrethroid and Fipronil Resistance in Isolates of Rhipicephalus Microplus in the North of Uruguay. Ticks. Tick. Borne. Dis, 12, 101747. doi: 10.1016/j.ttbdis.2021.101747 DOI: https://doi.org/10.1016/j.ttbdis.2021.101747

Martins, J. R., and Furlong, J. (2001). Avermectin Resistance of the Cattle Tick Boophilus Microplus in Brazil. Vet. Rec, 149, 64. https://scholar.google.com/scholar_lookup?journal=Vet.+Rec.&title=Avermectin+Resistance+of+the+Cattle+Tick+Boophilus+Microplus+in+Brazil&author=J.+R.+Martins&author=J.+Furlong&volume=149&publication_year=2001&pages=64&

Martins, J. R., Corrêa, B. L., & Ceresér, V. H. (1995). Acaricide Action of Fluazuron, Pour-on Formulation, on the Cattle Tick Boophilus Microplus.

Raynal, J. T., Silva, A. A. B. D., Sousa, T. D. J., Bahiense, T. C., Meyer, R., and Portela, R. W. (2013). Acaricides Efficiency on Rhipicephalus (Boophilus) Microplus From Bahia State North-Central Region. Rev. Bras. Parasitol. Vet, 22, 71-77. doi: 10.1590/S1984-29612013005000006 DOI: https://doi.org/10.1590/S1984-29612013005000006

Bull, M. S., Swindale, S., Overend, D., and Hess, E. A. (1996). Suppression of Boophilus Microplus Populations With Fluazuron-an Acarine Growth Regulator. Aust. Vet. J, 74, 468-470. doi: 10.1111/j.1751- 0813.1996.tb07575.x DOI: https://doi.org/10.1111/j.1751-0813.1996.tb07575.x

Calligaris, I. B., De Oliveira, P. R., Roma, G. C., Bechara, G. H., and Camargo- Mathias, M. I. (2013). Action of the Insect Growth Regulator Fluazuron, the Active Ingredient of the Acaricide Acatak®, in Rhipicephalus Sanguineus Nymphs (Latreille 1806) (Acari: Ixodidae). Micros. Res. Tech, 76, 1177-1185. doi: 10.1002/jemt.22282 DOI: https://doi.org/10.1002/jemt.22282

Ribeiro, J. G., Soares, A. S., Chaves, P. E. E., Limberger, J. T., da Rosa, E., Zuravski, L., et al. (2019). Novel Acaricidal Drug Fluazuron Causes Immunotoxicity via Selective Depletion of Lymphocytes T Cd8. Evid. Based. Complement. Altern. Med, 1-7. doi: 10.1155/2019/2815461 DOI: https://doi.org/10.1155/2019/2815461

Baker, J. A. F., and Shaw, R. D. (1965). Toxaphene and Lindane Resistance in Rhipicephalus Appendiculatus, the Brown Ear Tick of Equatorial and Southern Africa. J. S. Afr. Vet. Assoc, 36, 321-330. https://journals.co.za/doi/10.10520/AJA00382809_3427

George, J. E., Pound, J. M., and Davey, R. B. (2004). Chemical Control of Ticks on Cattle and the Resistance of These Parasites to Acaricides. Parasitology, 129, 353-366. doi: 10.1017/S0031182003004682 DOI: https://doi.org/10.1017/S0031182003004682

Alonso-Diaz, M. A., Rodriguez-Vivas, R. I., Fragoso-Sanchez, H., and Rosario- Cruz, R. (2006). Resistencia De La Garrapata Boophilus Microplus a Los Ixodicidas. Arch. Med. Vet, 38, 105-113. doi: 10.4067/S0301- 732X2006000200003 DOI: https://doi.org/10.4067/S0301-732X2006000200003

Foil, L. D., Coleman, P., Eisler, M., Fragoso-Sanchez, H., Garcia-Vazquez, Z., Guerrero, F. D., et al. (2004). Factors That Influence the Prevalence of Acaricide Resistance and Tick-Borne Diseases. Vet. Parasitol, 125, 163-181. doi: 10.1016/j.vetpar.2004.05.012 DOI: https://doi.org/10.1016/j.vetpar.2004.05.012

Published

2023-05-30

How to Cite

Andreychyn, M. A., Klymnyuk, S. I., & Romanyuk, L. B. (2023). ACARICIDES AND THEIR APPLICATIONS: (PART 1). Infectious Diseases – Infektsiyni Khvoroby, (2), 39–51. https://doi.org/10.11603/1681-2727.2023.2.14101

Issue

Section

Reviews and lectures