SYNERGISTIC ANTIMICROBIAL ACTIVITY BY COMBINING TERBINAFINE WITH BENZOYL PEROXIDE AGAINST САNDIDA ALBICANS AND STAPHYLOCOCCUS AUREUS

Authors

  • O. V. Kochnieva Kharkiv National Medical University
  • O. V. Kotsar Kharkiv National Medical University
  • Y. M. Kalashnyk-Vakulenko Kharkiv National Medical University

DOI:

https://doi.org/10.11603/1681-2727.2023.1.13924

Keywords:

polymicrobial infection, biofilms, combined action

Abstract

The aim. To investigate the ability of microorganisms’ C. albicans and S. aureus to form biofilms. To evaluate the sensitivity of biofilms to combination of terbinafine and benzoyl peroxide on this association.

Material and methods. The ability to form biofilms of microorganisms and the antimicrobial effect of the studied drugs was carried out on polystyrene plates for enzyme-linked immunosorbent assay. The optical density (OD) of biofilms was measured at a wavelength of 545 nm on a biochemical analyzer. The viability of microorganisms was determined by counting the number of colony-forming units (CFU) in 1 ml of the culture medium with experimental strains.

Results. The average optical density of biofilms was (1.0892±0.006) units. The OD for clinical isolates was (0.0776±0.004) units. It has been proven that combination of the antimycotic substance − terbinafine and the antiseptic − benzoyl peroxide had a high activity in relation to the association of C. albicans and S. aureus with concentration of 1.3 μg/ml.

Conclusion. The study showed the ability to form biofilms in clinical strains of microorganisms is more pronounced than the reference strains. The highest rate of biofilm formation was found in the association of microorganisms’ C. albicans and S. aureus. The combination of medicines also effectively operated with planktonic forms of bacteria, but also on microorganisms mobilized in biofilms. A decrease of optical density and 2-fold decrease of CFU demonstrated this.

Author Biographies

O. V. Kochnieva, Kharkiv National Medical University

канд. мед. наук, старший викладач кафедри мікробіології, вірусології та імунології ім. проф. Д. П. Гриньова Харківського національного медичного університету

O. V. Kotsar, Kharkiv National Medical University

PhD, Associate Professor of the prof. D. P. Hrynyov Department of Microbiology, Virology and Immunology of the Kharkiv National Medical University

Y. M. Kalashnyk-Vakulenko, Kharkiv National Medical University

PhD, Associate Professor of the Department Otorhinolaryngology of the Kharkiv National Medical University

References

Krüger, W., Vielreicher, S., Kapitan, M., Jacobsen, I. D., & Niemiec, M. J. (2019). Fungal-bacterial interactions in health and disease. Pathogens, 8(2), 70. DOI: https://doi.org/10.3390/pathogens8020070

Peters, B. M., Jabra-Rizk, M. A., Scheper, M. A., Leid, J. G., Costerton, J. W., & Shirtliff, M. E. (2010). Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Immunology & Medical Microbiology, 59(3), 493-503. DOI: https://doi.org/10.1111/j.1574-695X.2010.00710.x

Harriott, M. M., & Noverr, M. C. (2009). Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrobial agents and chemotherapy, 53(9), 3914-3922. DOI: https://doi.org/10.1128/AAC.00657-09

Todd, O. A., Fidel Jr, P. L., Harro, J. M., Hilliard, J. J., Tkaczyk, C., Sellman, B. R., ... & Peters, B. M. (2019). Candida albicans augments Staphylococcus aureus virulence by engaging the staphylococcal agr quorum sensing system. MBio, 10(3), e00910-19. DOI: https://doi.org/10.1128/mBio.00910-19

Brandwein, M., Steinberg, D., & Meshner, S. (2016). Microbial biofilms and the human skin microbiome. NPJ biofilms and microbiomes, 2(1), 3. DOI: https://doi.org/10.1038/s41522-016-0004-z

Lin, Y. J., Alsad, L., Vogel, F., Koppar, S., Nevarez, L., Auguste, F., ... & Loomis, J. S. (2013). Interactions between Candida albicans and Staphylococcus aureus within mixed species biofilms. Bios, 84(1), 30-39. DOI: https://doi.org/10.1893/0005-3155-84.1.30

Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16(3), 143-155. DOI: https://doi.org/10.1038/nrmicro.2017.157

Vila, T., Kong, E. F., Montelongo-Jauregui, D., Van Dijck, P., Shetty, A. C., McCracken, C., ... & Jabra-Rizk, M. A. (2021). Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 12(1), 835-851. DOI: https://doi.org/10.1080/21505594.2021.1894834

Chan, W. K., Saravanan, A., Manikam, J., Goh, K. L., & Mahadeva, S. (2011). Appointment waiting times and education level influence the quality of bowel preparation in adult patients undergoing colonoscopy. BMC gastroenterology, 11, 1-9. DOI: https://doi.org/10.1186/1471-230X-11-86

Negrini, T. D. C., Koo, H., & Arthur, R. A. (2019). Candida–bacterial biofilms and host–microbe interactions in oral diseases. Oral Mucosal Immunity and Microbiome, 119-141. DOI: https://doi.org/10.1007/978-3-030-28524-1_10

Boldock, E., Surewaard, B. G., Shamarina, D., Na, M., Fei, Y., Ali, A., ... & Foster, S. J. (2018). Human skin commensals augment Staphylococcus aureus pathogenesis. Nature microbiology, 3(8), 881-890. DOI: https://doi.org/10.1038/s41564-018-0198-3

Kean, R., Rajendran, R., Haggarty, J., Townsend, E. M., Short, B., Burgess, K. E., ... & Ramage, G. (2017). Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Frontiers in microbiology, 8, 258. DOI: https://doi.org/10.3389/fmicb.2017.00258

Van Acker, H., Van Dijck, P., & Coenye, T. (2014). Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends in microbiology, 22(6), 326-333. DOI: https://doi.org/10.1016/j.tim.2014.02.001

Burkhart, C. G., Burkhart, C. N., & Isham, N. (2006). Synergistic antimicrobial activity by combining an allylamine with benzoyl peroxide with expanded coverage against yeast and bacterial species. British Journal of Dermatology, 154(2), 341-344. DOI: https://doi.org/10.1111/j.1365-2133.2005.06924.x

Matuschek, C., Moll, F., Fangerau, H., Fischer, J. C., Zänker, K., van Griensven, M., ... & Haussmann, J. (2020). Face masks: benefits and risks during the COVID-19 crisis. European journal of medical research, 25, 1-8. DOI: https://doi.org/10.1186/s40001-020-00430-5

Okamoto, K., Kanayama, S., Ikeda, F., Fujikawa, K., Fujiwara, S., Nozawa, N., ... & Oda, M. (2021). Broad spectrum in vitro microbicidal activity of benzoyl peroxide against microorganisms related to cutaneous diseases. The Journal of Dermatology, 48(4), 551-555. DOI: https://doi.org/10.1111/1346-8138.15739

Brogden, K. A., Guthmiller, J. M., & Taylor, C. E. (2005). Human polymicrobial infections. The Lancet, 365(9455), 253-255. DOI: https://doi.org/10.1016/S0140-6736(05)70155-0

Rogiers, O., Holtappels, M., Siala, W., Lamkanfi, M., Van Bambeke, F., Lagrou, K., ... & Kucharíková, S. (2018). Anidulafungin increases the antibacterial activity of tigecycline in polymicrobial Candida albicans/Staphylococcus aureus biofilms on intraperitoneally implanted foreign bodies. Journal of Antimicrobial Chemotherapy, 73(10), 2806-2814. DOI: https://doi.org/10.1093/jac/dky246

Budzyńska, A., Różalska, S., Sadowska, B., & Różalska, B. (2017). Candida albicans/Staphylococcu s aureus Dual-Species Biofilm as a Target for the Combination of Essential Oils and Fluconazole or Mupirocin. Mycopathologia, 182, 989-995. DOI: https://doi.org/10.1007/s11046-017-0192-y

Li, H., Zhang, C., Liu, P., Liu, W., Gao, Y., & Sun, S. (2015). In vitro interactions between fluconazole and minocycline against mixed cultures of Candida albicans and Staphylococcus aureus. Journal of Microbiology, Immunology and Infection, 48(6), 655-661. DOI: https://doi.org/10.1016/j.jmii.2014.03.010

Published

2023-03-29

How to Cite

Kochnieva, O. V., Kotsar, O. V., & Kalashnyk-Vakulenko, Y. M. (2023). SYNERGISTIC ANTIMICROBIAL ACTIVITY BY COMBINING TERBINAFINE WITH BENZOYL PEROXIDE AGAINST САNDIDA ALBICANS AND STAPHYLOCOCCUS AUREUS. Infectious Diseases – Infektsiyni Khvoroby, (1), 40–45. https://doi.org/10.11603/1681-2727.2023.1.13924

Issue

Section

Original investigations