MIXED INFECTION OF COVID-19 AND INFLUENZA: CURRENT STATE OF THE ISSUE
DOI:
https://doi.org/10.11603/1681-2727.2023.1.13919Keywords:
coronavirus disease COVID-19, influenza, viral infection, clinic, diagnosis, treatmentAbstract
SUMMARY. The paper presents current data on mixed infection caused by SARS-CoV-2 and the influenza virus at various stages of the COVID-19 pandemic. It is noted that the onset of the COVID-19 pandemic coincided with a seasonal increase in the incidence of influenza, which led to mixed infection and increased the risk of a fatal outcome. Despite the limited resources for testing for other respiratory infections during the COVID-19 pandemic, the data presented in the literature indicate significant changes in the course of mixed infection depending on the circulation of the dominant strain of SARS-CoV-2. During the circulation of the Omicron SARS-CoV-2 strain, there is an increase in the number of influenza cases and, accordingly, mixed infection. The frequency of mixed infection of COVID-19 and influenza is not high. However, in these cases, a greater severity of clinical symptoms and the risk of a more severe course of the disease are characteristic. This requires timely testing for both of these infections to decide the choice of antiviral treatment. The study of the peculiarities of “cytokine storm” formation is a promising direction of research for the further development of immunotropic treatment differential means. Preventive measures should include vaccination against both COVID-19 and influenza in the context of the COVID-19 pandemic and seasonal influenza.
References
Rubin, R. (2020). What Happens When COVID-19 Collides With Flu Season? JAMA, 324 (10), 923. https://doi.org/10.1001/jama.2020.15260 DOI: https://doi.org/10.1001/jama.2020.15260
Ma, S., Lai, X., Chen, Z., Tu, S., & Qin, K. (2020). Clinical characteristics of critically ill patients co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. International Journal of Infectious Diseases, 96, 683–687. https://doi.org/10.1016/j.ijid.2020.05.068
Wu, X., Cai, Y., Huang, X., Yu, X., Zhao, L., Wang, F., Li, Q., Gu, S., Xu, T., Li, Y., Lu, B., & Zhan, Q. (2020). Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with Pneumonia, China. Emerging Infectious Diseases, 26 (6), 1324–1326. https://doi.org/10.3201/eid2606.200299 DOI: https://doi.org/10.3201/eid2606.200299
Pawlowski, C., Silvert, E., O'Horo, J. C., Lenehan, P. J., Challener, D., Gnass, E., Murugadoss, K., Ross, J., Speicher, L., Geyer, H., Venkatakrishnan, A. J., Badley, A. D., & Soundararajan, V. (2022). SARS-CoV-2 and influenza co-infection throughout the COVID-19 pandemic: An assessment of co-infection rates, cohort characteristics, and clinical outcomes. PNAS Nexus. https://doi.org/10.1093/pnasnexus/pgac071 DOI: https://doi.org/10.1101/2022.02.02.22270324
Antony, S. J., Almaghlouth, N. K., & Heydemann, E. L. (2020). Are coinfections with COVID‐19 and influenza low or underreported? An observational study examining current published literature including three new unpublished cases. Journal of Medical Virology, 92 (11), 2489–2497. https://doi.org/10.1002/jmv.26167 DOI: https://doi.org/10.1002/jmv.26167
Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. Journal of Infection, 81 (2), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046 DOI: https://doi.org/10.1016/j.jinf.2020.05.046
Nickbakhsh, S., Mair, C., Matthews, L., Reeve, R., Johnson, P. C. D., Thorburn, F., von Wissmann, B., Reynolds, A., McMenamin, J., Gunson, R. N., & Murcia, P. R. (2019). Virus–virus interactions impact the population dynamics of influenza and the common cold. Proceedings of the National Academy of Sciences, 116 (52), 27142–27150. https://doi.org/10.1073/pnas.1911083116 DOI: https://doi.org/10.1073/pnas.1911083116
Linde, A., Rotzén-Östlund, M., Zweygberg-Wirgart, B., Rubinova, S., & Brytting, M. (2009). Does viral interference affect spread of influenza? Eurosurveillance, 14 (40). https://doi.org/10.2807/ese.14.40.19354-en DOI: https://doi.org/10.2807/ese.14.40.19354-en
Casalegno, J. S., Ottmann, M., Bouscambert Duchamp, M., Escuret, V., Billaud, G., Frobert, E., Morfin, F., & Lina, B. (2010). Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clinical Microbiology and Infection, 16 (4), 326–329. https://doi.org/10.1111/j.1469-0691.2010.03167.x DOI: https://doi.org/10.1111/j.1469-0691.2010.03167.x
Casalegno, J. S., Ottmann, M., Bouscambert-Duchamp, M., Valette, M., Morfin, F., & Lina, B. (2010). Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009. Eurosurveillance, 15(6). https://doi.org/10.2807/ese.15.06.19485-en DOI: https://doi.org/10.2807/ese.15.06.19485-en
Mak, G. C., Wong, A. H., Ho, W. Y. Y., & Lim, W. (2012). The impact of pandemic influenza A (H1N1) 2009 on the circulation of respiratory viruses 2009-2011. Influenza and Other Respiratory Viruses, 6(3), Стаття e6-e10. https://doi.org/10.1111/j.1750-2659.2011.00323.x DOI: https://doi.org/10.1111/j.1750-2659.2011.00323.x
Cowling, B. J., Fang, V. J., Nishiura, H., Chan, K.-H., Ng, S., Ip, D. K. M., Chiu, S. S., Leung, G. M., & Peiris, J. S. M. (2012). Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine. Clinical Infectious Diseases, 54 (12), 1778–1783. https://doi.org/10.1093/cid/cis307 DOI: https://doi.org/10.1093/cid/cis307
Susi, H., Barrès, B., Vale, P. F., & Laine, A.-L. (2015). Co-infection alters population dynamics of infectious disease. Nature Communications, 6(1). https://doi.org/10.1038/ncomms6975 DOI: https://doi.org/10.1038/ncomms6975
Ferguson, N., Anderson, R., & Gupta, S. (1999). The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proceedings of the National Academy of Sciences, 96 (2), 790–794. https://doi.org/10.1073/pnas.96.2.790 DOI: https://doi.org/10.1073/pnas.96.2.790
Ferguson, N. M., Galvani, A. P., & Bush, R. M. (2003). Ecological and immunological determinants of influenza evolution. Nature, 422 (6930), 428–433. https://doi.org/10.1038/nature01509 DOI: https://doi.org/10.1038/nature01509
Bhattacharyya, S., Gesteland, P. H., Korgenski, K., Bjørnstad, O. N., & Adler, F. R. (2015). Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. Proceedings of the National Academy of Sciences, 112 (43), 13396–13400. https://doi.org/10.1073/pnas.1516698112 DOI: https://doi.org/10.1073/pnas.1516698112
Chan, K. F., Carolan, L. A., Korenkov, D., Druce, J., McCaw, J., Reading, P. C., Barr, I. G., & Laurie, K. L. (2018). Investigating Viral Interference Between Influenza A Virus and Human Respiratory Syncytial Virus in a Ferret Model of Infection. The Journal of Infectious Diseases, 218 (3), 406–417. https://doi.org/10.1093/infdis/jiy184 DOI: https://doi.org/10.1093/infdis/jiy184
Gonzalez, A. J., Ijezie, E. C., Balemba, O. B., & Miura, T. A. (2018). Attenuation of Influenza A Virus Disease Severity by Viral Coinfection in a Mouse Model. Journal of Virology, 92 (23). https://doi.org/10.1128/jvi.00881-18 DOI: https://doi.org/10.1128/JVI.00881-18
He, Z., & Tao, H. (2018). Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. International Journal of Infectious Diseases, 74, 61–70. https://doi.org/10.1016/j.ijid.2018.07.003 DOI: https://doi.org/10.1016/j.ijid.2018.07.003
Lv, Z., Cheng, S., Le, J., Huang, J., Feng, L., Zhang, B., & Li, Y. (2020). Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes and Infection, 22(4-5), 195–199. https://doi.org/10.1016/j.micinf.2020.05.007 DOI: https://doi.org/10.1016/j.micinf.2020.05.007
Aghbash, P. S., Eslami, N., Shirvaliloo, M., & Baghi, H. B. (2021). Viral coinfections in COVID‐19. Journal of Medical Virology, 93(9), 5310–5322. https://doi.org/10.1002/jmv.27102 DOI: https://doi.org/10.1002/jmv.27102
Kim, D., Quinn, J., Pinsky, B., Shah, N. H., & Brown, I. (2020). Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA, 323 (20), 2085. https://doi.org/10.1001/jama.2020.6266 DOI: https://doi.org/10.1001/jama.2020.6266
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395 (10223), 507–513. https://doi.org/10.1016/s0140-6736(20)30211-7 DOI: https://doi.org/10.1016/S0140-6736(20)30211-7
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., ... Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5
Sullivan, S. J., Jacobson, R. M., Dowdle, W. R., & Poland, G. A. (2010). 2009 H1N1 Influenza. Mayo Clinic Proceedings, 85 (1), 64–76. https://doi.org/10.4065/mcp.2009.0588 DOI: https://doi.org/10.4065/mcp.2009.0588
Stowe, J., Tessier, E., Zhao, H., Guy, R., Muller-Pebody, B., Zambon, M., Andrews, N., Ramsay, M., & Lopez Bernal, J. (2021). Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: a test-negative design. International Journal of Epidemiology, 50 (4), 1124–1133. https://doi.org/10.1093/ije/dyab081 DOI: https://doi.org/10.1093/ije/dyab081
Dadashi, M., Khaleghnejad, S., Abedi Elkhichi, P., Goudarzi, M., Goudarzi, H., Taghavi, A., Vaezjalali, M., & Hajikhani, B. (2021). COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.681469 DOI: https://doi.org/10.3389/fmed.2021.681469
Pinky, L., & Dobrovolny, H. M. (2020). SARS‐CoV‐2 coinfections: Could influenza and the common cold be beneficial? Journal of Medical Virology, 92(11), 2623–2630. https://doi.org/10.1002/jmv.26098 DOI: https://doi.org/10.1002/jmv.26098
Fink, G., Orlova-Fink, N., Schindler, T., Grisi, S., Ferrer, A. P. S., Daubenberger, C., & Brentani, A. (2020). Inactivated trivalent influenza vaccination is associated with lower mortality among patients with COVID-19 in Brazil. BMJ Evidence-Based Medicine, bmjebm—2020–111549. https://doi.org/10.1136/bmjebm-2020-111549 DOI: https://doi.org/10.1101/2020.06.29.20142505
Marín‐Hernández, D., Schwartz, R. E., & Nixon, D. F. (2020). Epidemiological evidence for association between higher influenza vaccine uptake in the elderly and lower COVID‐19 deaths in Italy. Journal of Medical Virology, 93 (1), 64–65. https://doi.org/10.1002/jmv.26120 DOI: https://doi.org/10.1002/jmv.26120
Tang, C. Y., Boftsi, M., Staudt, L., McElroy, J. A., Li, T., Duong, S., Ohler, A., Ritter, D., Hammer, R., Hang, J., & Wan, X.-F. (2022). SARS-CoV-2 and influenza co-infection: A cross-sectional study in central Missouri during the 2021–2022 influenza season. Virology. https://doi.org/10.1016/j.virol.2022.09.009 DOI: https://doi.org/10.1016/j.virol.2022.09.009
Privor-Dumm, L. A., Poland, G. A., Barratt, J., Durrheim, D. N., Deloria Knoll, M., Vasudevan, P., Jit, M., Bonvehí, P. E., & Bonanni, P. (2020). A global agenda for older adult immunization in the COVID-19 era: A roadmap for action. Vaccine. https://doi.org/10.1016/j.vaccine.2020.06.082 DOI: https://doi.org/10.1016/j.vaccine.2020.06.082
Yue, H., Zhang, M., Xing, L., Wang, K., Rao, X., Liu, H., Tian, J., Zhou, P., Deng, Y., & Shang, J. (2020). The epidemiology and clinical characteristics of co‐infection of SARS‐CoV‐2 and influenza viruses in patients during COVID‐19 outbreak. Journal of Medical Virology, 92 (11), 2870–2873. https://doi.org/10.1002/jmv.26163 DOI: https://doi.org/10.1002/jmv.26163
Hashemi, S. A., Safamanesh, S., Ghafouri, M., Taghavi, M. R., Mohajer Zadeh Heydari, M. S., Namdar Ahmadabad, H., Ghasemzadeh‐Moghaddam, H., & Azimian, A. (2020). Co‐infection with COVID‐19 and influenza A virus in two died patients with acute respiratory syndrome, Bojnurd, Iran. Journal of Medical Virology, 92 (11), 2319–2321. https://doi.org/10.1002/jmv.26014 DOI: https://doi.org/10.1002/jmv.26014
Kondo, Y., Miyazaki, S., Yamashita, R., & Ikeda, T. (2020). Coinfection with SARS-CoV-2 and influenza A virus. BMJ Case Reports, 13 (7), Стаття e236812. https://doi.org/10.1136/bcr-2020-236812 DOI: https://doi.org/10.1136/bcr-2020-236812
Konala, V. M., Adapa, S., Naramala, S., Chenna, A., Lamichhane, S., Garlapati, P. R., Balla, M., & Gayam, V. (2020). A Case Series of Patients Coinfected With Influenza and COVID-19. Journal of Investigative Medicine High Impact Case Reports, 8, 232470962093467. https://doi.org/10.1177/2324709620934674 DOI: https://doi.org/10.1177/2324709620934674
Olsen, S. J., Winn, A. K., Budd, A. P., Prill, M. M., Steel, J., Midgley, C. M., Kniss, K., Burns, E., Rowe, T., Foust, A., Jasso, G., Merced-Morales, A., Davis, C. T., Jang, Y., Jones, J., Daly, P., Gubareva, L., Barnes, J., Kondor, R., ... Silk, B. J. (2021). Changes in influenza and other respiratory virus activity during the COVID-19 pandemic – United States, 2020–2021. MMWR. Morbidity and Mortality Weekly Report, 70 (29), 1013–1019. https://doi.org/10.15585/mmwr.mm7029a1 DOI: https://doi.org/10.15585/mmwr.mm7029a1
Sakamoto, H., Ishikane, M., & Ueda, P. (2020). Seasonal influenza activity during the SARS-CoV-2 outbreak in Japan. JAMA, 323 (19), 1969. https://doi.org/10.1001/jama.2020.6173 DOI: https://doi.org/10.1001/jama.2020.6173
Rezaee, D., Bakhtiari, S., Jalilian, F.A., Doosti-Irani, A., Asadi, F. T., & Ansari, N. (2023). Coinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus during the COVID-19 pandemic. Archives of Virology, 168 (2). https://doi.org/10.1007/s00705-022-05628-y DOI: https://doi.org/10.1007/s00705-022-05628-y
Ma, S., Lai, X., Chen, Z., Tu, S., & Qin, K. (2020). Clinical characteristics of critically ill patients co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. International Journal of Infectious Diseases, 96, 683–687. https://doi.org/10.1016/j.ijid.2020.05.068 DOI: https://doi.org/10.1016/j.ijid.2020.05.068
Ji, M., Xia, Y., Loo, J. F.-C., Li, L., Ho, H.-P., He, J., & Gu, D. (2020). Automated multiplex nucleic acid tests for rapid detection of SARS-CoV-2, influenza A and B infection with direct reverse-transcription quantitative PCR (dirRT-qPCR) assay in a centrifugal microfluidic platform. RSC Advances, 10(56), 34088–34098. https://doi.org/10.1039/d0ra04507a DOI: https://doi.org/10.1039/D0RA04507A
Pacheco-Hernández, L. M., Ramírez-Noyola, J. A., Gómez-García, I. A., Ignacio-Cortés, S., Zúñiga, J., & Choreño-Parra, J. A. (2022). Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J. Interferon Cytokine Res., 42 (8), 369-392. https://doi.org/10.1089/jir.2022.0029 DOI: https://doi.org/10.1089/jir.2022.0029
Fajgenbaum, D. C., & June, C. H. (2020). Cytokine Storm. New England Journal of Medicine, 383 (23), 2255–2273. https://doi.org/10.1056/nejmra2026131 DOI: https://doi.org/10.1056/NEJMra2026131
Mudd, P. A., Crawford, J. C., Turner, J. S., Souquette, A., Reynolds, D., Bender, D., Bosanquet, J. P., Anand, N. J., Striker, D. A., Martin, R. S., Boon, A. C. M., House, S. L., Remy, K. E., Hotchkiss, R. S., Presti, R. M., O’Halloran, J. A., Powderly, W. G., Thomas, P. G., & Ellebedy, A. H. (2020). Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances, 6 (50), Стаття eabe3024. https://doi.org/10.1126/sciadv.abe3024 DOI: https://doi.org/10.1126/sciadv.abe3024
Olbei, M., Hautefort, I., Modos, D., Treveil, A., Poletti, M., Gul, L., Shannon-Lowe, C. D., & Korcsmaros, T. (2021). SARS-CoV-2 Causes a Different Cytokine Response Compared to Other Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.629193 DOI: https://doi.org/10.3389/fimmu.2021.629193
Choreño-Parra, J. A., Thirunavukkarasu, S., Zúñiga, J., & Khader, S. A. (2020). The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine & Growth Factor Reviews, 53, 53–62. https://doi.org/10.1016/j.cytogfr.2020.04.004 DOI: https://doi.org/10.1016/j.cytogfr.2020.04.004
Fraissé, M., Logre, E., Mentec, H., Cally, R., Plantefève, G., & Contou, D. (2020). Eosinophilia in critically ill COVID-19 patients: a French monocenter retrospective study. Critical Care, 24(1). https://doi.org/10.1186/s13054-020-03361-z DOI: https://doi.org/10.1186/s13054-020-03361-z
Lucas, C., Wong, P., Klein, J., Castro, T. B. R., Silva, J., Sundaram, M., Ellingson, M. K., Mao, T., Oh, J. E., Israelow, B., Takahashi, T., Tokuyama, M., Lu, P., Venkataraman, A., Park, A., Mohanty, S., Wang, H., Wyllie, A. L., Vogels, C. B. F., ... Iwasaki, A. (2020). Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 584(7821), 463–469. https://doi.org/10.1038/s41586-020-2588-y DOI: https://doi.org/10.1038/s41586-020-2588-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 I. S. Kovbasyuk
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0