LONG-COVID AND ASSOCIATED INJURIES OF THE CARDIOVASCULAR AND NERVOUS SYSTEMS
DOI:
https://doi.org/10.11603/1681-2727.2022.4.13701Keywords:
coronavirus infection, Long-COVID, clinical signs, cardiovascular system, nervous system, blood coagulation system, myocarditis, pericarditis, endothelium, brain-heart axis, stroke, good health and well-beingAbstract
In order to study the peculiarities of the clinical course of Long-COVID, a review of scientific publications containing data on Long-COVID as a separate pathological condition, relevant information on its manifestations, and some pathophysiological mechanisms leading to the development of lesions of the cardiovascular and nervous systems was conducted.
Conclusions. The definition of the term Long-COVID as a separate condition in the course of coronavirus disease took place in several stages. Symptoms of Long-COVID are associated with damage to almost all organ systems. Cardiovascular lesions are among the most common, and there is evidence that the mechanism of such lesions is associated with disorders in the blood clotting system with the formation of microthrombi. In addition, cardiovascular damage is the main cause of death in patients with Long-COVID. The gender ratio in the case of cardiovascular damage is the same, while damage to the nervous system and other organs and systems occurs mainly in women. Some of the existing data have already found additional confirmation in the results of recent studies, while others need to be confirmed.
References
Scher, E., O’Toole, Á., & Rambaut, A. (n.d.). Cov-Lineages. Cov-Lineages. https://cov-lineages.org/lineage_list.html.
Campbell, F., Archer, B., Laurenson-Schafer, H., Jinnai, Y., Konings, F., Batra, N., Pavlin, B., Vandemaele, K., Van Kerkhove, M. D., Jombart, T., Morgan, O., & le Polain de Waroux, O. (2021). Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance, 26 (24). https://doi.org/10.2807/1560-7917.es.2021.26.24.2100509 DOI: https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509
Nyberg, T., Ferguson, N. M., Nash, S. G., Webster, H. H., Flaxman, S., Andrews, N., Hinsley, W., Bernal, J. L., Kall, M., Bhatt, S., Blomquist, P., Zaidi, A., Volz, E., Aziz, N. A., Harman, K., Funk, S., Abbott, S., Hope, R., Charlett, A., . . . Thelwall, S. (2022). Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. The Lancet, 399 (10332), 1303–1312. https://doi.org/10.1016/s0140-6736(22)00462-7 DOI: https://doi.org/10.1016/S0140-6736(22)00462-7
Ukraine: Coronavirus pandemic country profile. (n.d.). Our World in Data. https://ourworldindata.org/coronavirus/country/ukraine.
Podavalenko, A., Malysh, N., Zadorozhna, V., Chemych, M., Birukova, S., & Chorna, I. (2022). The current epidemic situation of infections with airborne transmission of viral etiology in Ukraine. Bangladesh Journal of Medical Science, 21 (3), 610–619. https://doi.org/10.3329/bjms.v21i3.59575 DOI: https://doi.org/10.3329/bjms.v21i3.59575
Why we need to keep using the patient made term “Long Covid” – The BMJ. (n.d.). The BMJ. https://blogs.bmj.com/bmj/2020/10/01/why-we-need-to-keep-using-the-patient-made-term-long-covid/.
Subramanian, A., Nirantharakumar, K., Hughes, S., Myles, P., Williams, T., Gokhale, K. M., Taverner, T., Chandan, J. S., Brown, K., Simms-Williams, N., Shah, A. D., Singh, M., Kidy, F., Okoth, K., Hotham, R., Bashir, N., Cockburn, N., Lee, S. I., Turner, G. M., ... Haroon, S. (2022). Symptoms and risk factors for long COVID in non-hospitalized adults. Nature Medicine. https://doi.org/10.1038/s41591-022-01909-w DOI: https://doi.org/10.1038/s41591-022-01909-w
Davis, H. E., Assaf, G. S., McCorkell, L., Wei, H., Low, R. J., Re’em, Y., Redfield, S., Austin, J. P., & Akrami, A. (2021). Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine, 38, 101019. https://doi.org/10.1016/j.eclinm.2021.101019 DOI: https://doi.org/10.1016/j.eclinm.2021.101019
A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. (n.d.). World Health Organization (WHO). https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.
Tanni, S. E., Tonon, C. R., Gatto, M., Mota, G. A. F., & Okoshi, M. P. (2022). Post-COVID-19 syndrome: Cardiovascular manifestations. International Journal of Cardiology. https://doi.org/10.1016/j.ijcard.2022.08.054 DOI: https://doi.org/10.1016/j.ijcard.2022.08.054
Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L., Xu, D., Li, Y., Li, C., Peng, L., . . . Cao, B. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. The Lancet, 397(10270), 220–232. https://doi.org/10.1016/s0140-6736(20)32656-8 DOI: https://doi.org/10.1016/S0140-6736(20)32656-8
Taquet, M., Geddes, J. R., Husain, M., Luciano, S., & Harrison, P. J. (2021). 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. The Lancet Psychiatry, 8 (5), 416–427. https://doi.org/10.1016/s2215-0366(21)00084-5 DOI: https://doi.org/10.1016/S2215-0366(21)00084-5
Uusküla, A., Jürgenson, T., Pisarev, H., Kolde, R., Meister, T., Tisler, A., Suija, K., Kalda, R., Piirsoo, M., & Fischer, K. (2022). Long-term mortality following SARS-CoV-2 infection: A national cohort study from Estonia. The Lancet Regional Health – Europe, 100394. https://doi.org/10.1016/j.lanepe.2022.100394 DOI: https://doi.org/10.1016/j.lanepe.2022.100394
Xie, Y., Xu, E., Bowe, B., & Al-Aly, Z. (2022). Long-term cardiovascular outcomes of COVID-19. Nature Medicine, 28 (3), 583–590. https://doi.org/10.1038/s41591-022-01689-3 DOI: https://doi.org/10.1038/s41591-022-01689-3
Raman, B., Bluemke, D. A., Lüscher, T. F., & Neubauer, S. (2022). Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. European Heart Journal, 43 (11), 1157–1172. https://doi.org/10.1093/eurheartj/ehac031 DOI: https://doi.org/10.1093/eurheartj/ehac031
Basso, C., Leone, O., Rizzo, S., De Gaspari, M., van der Wal, A. C., Aubry, M.-C., Bois, M. C., Lin, P. T., Maleszewski, J. J., & Stone, J. R. (2020). Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. European Heart Journal, 41(39), 3827–3835. https://doi.org/10.1093/eurheartj/ehaa664 DOI: https://doi.org/10.1093/eurheartj/ehaa664
Halushka, M. K., & Vander Heide, R. S. (2021). Myocarditis is rare in COVID-19 autopsies: Cardiovascular findings across 277 postmortem examinations. Cardiovascular Pathology, 50, 107300. https://doi.org/10.1016/j.carpath.2020.107300 DOI: https://doi.org/10.1016/j.carpath.2020.107300
Bois, M. C., Boire, N. A., Layman, A. J., Aubry, M.-C., Alexander, M. P., Roden, A. C., Hagen, C. E., Quinton, R. A., Larsen, C., Erben, Y., Majumdar, R., Jenkins, S. M., Kipp, B. R., Lin, P. T., & Maleszewski, J. J. (2020). COVID-19-associated non-occlusive fibrin microthrombi in the heart. Circulation. https://doi.org/10.1161/circulationaha.120.050754 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050754
von Meijenfeldt, F. A., Havervall, S., Adelmeijer, J., Lundström, A., Magnusson, M., Mackman, N., Thalin, C., & Lisman, T. (2021). Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Advances, 5 (3), 756–759. https://doi.org/10.1182/bloodadvances.2020003968 DOI: https://doi.org/10.1182/bloodadvances.2020003968
Pretorius, E., Venter, C., Laubscher, G. J., Kotze, M. J., Oladejo, S. O., Watson, L. R., Rajaratnam, K., Watson, B. W., & Kell, D. B. (2022). Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovascular Diabetology, 21 (1). https://doi.org/10.1186/s12933-022-01579-5 DOI: https://doi.org/10.1186/s12933-022-01579-5
Laubscher, G. J., Lourens, P. J., Venter, C., Kell, D. B., & Pretorius, E. (2021). TEG®, microclot and platelet mapping for guiding early management of severe COVID-19 coagulopathy. Journal of Clinical Medicine, 10 (22), 5381. https://doi.org/10.3390/jcm10225381 DOI: https://doi.org/10.3390/jcm10225381
Bunch, C. M., Moore, E. E., Moore, H. B., Neal, M. D., Thomas, A. V., Zackariya, N., Zhao, J., Zackariya, S., Brenner, T. J., Berquist, M., Buckner, H., Wiarda, G., Fulkerson, D., Huff, W., Kwaan, H. C., Lankowicz, G., Laubscher, G. J., Lourens, P. J., Pretorius, E., ... Walsh, M. M. (2022). Immuno-Thrombotic complications of COVID-19: Implications for timing of surgery and anticoagulation. Frontiers in Surgery, 9. https://doi.org/10.3389/fsurg.2022.889999 DOI: https://doi.org/10.3389/fsurg.2022.889999
Grobbelaar, L. M., Venter, C., Vlok, M., Ngoepe, M., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2021). SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: Implications for microclot formation in COVID-19. Bioscience Reports, 41 (8). https://doi.org/10.1042/bsr20210611 DOI: https://doi.org/10.1042/BSR20210611
Nyström, S., & Hammarström, P. (2022). Amyloidogenesis of SARS-CoV-2 spike protein. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.2c03925 DOI: https://doi.org/10.1101/2021.12.16.472920
Palma, J. A., & Benarroch, E. E. (2014). Neural control of the heart: Recent concepts and clinical correlations. Neurology, 83 (3), 261–271. https://doi.org/10.1212/wnl.0000000000000605 DOI: https://doi.org/10.1212/WNL.0000000000000605
Xu, C., Zheng, A., He, T., & Cao, Z. (2020). Brain–Heart axis and biomarkers of cardiac damage and dysfunction after stroke: A systematic review and meta-analysis. International Journal of Molecular Sciences, 21 (7), 2347. https://doi.org/10.3390/ijms21072347 DOI: https://doi.org/10.3390/ijms21072347
Jusic, A., Stellos, K., Ferreira, L., Baker, A. H., & Devaux, Y. (2022). (Epi)transcriptomics in cardiovascular and neurological complications of COVID-19. Journal of Molecular and Cellular Cardiology Plus, 100013. https://doi.org/10.1016/j.jmccpl.2022.100013 DOI: https://doi.org/10.1016/j.jmccpl.2022.100013
Greinacher, A., Thiele, T., Warkentin, T. E., Weisser, K., Kyrle, P. A., & Eichinger, S. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, 384 (22), 2092–2101. https://doi.org/10.1056/nejmoa2104840 DOI: https://doi.org/10.1056/NEJMoa2104840
Larson, K. F., Ammirati, E., Adler, E. D., Cooper, L. T., Hong, K. N., Saponara, G., Couri, D., Cereda, A., Procopio, A., Cavalotti, C., Oliva, F., Sanna, T., Ciconte, V. A., Onyango, G., Holmes, D. R., & Borgeson, D. D. (2021). Myocarditis After BNT162b2 and mRNA-1273 Vaccination. Circulation, 144 (6), 506–508. https://doi.org/10.1161/circulationaha.121.055913 DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.055913
Non-hospitalised children & young people (CYP) with long covid (the clock study). (n.d.). Search – NIHR Funding and Awards. https://fundingawards.nihr.ac.uk/award/COV-LT-0022
Zhang, H., Zang, C., Xu, Z., Zhang, Y., Xu, J., Bian, J., Morozyuk, D., Khullar, D., Zhang, Y., Nordvig, A. S., Schenck, E. J., Shenkman, E. A., Rothman, R. L., Block, J. P., Lyman, K., Weiner, M. G., Carton, T. W., Wang, F., & Kaushal, R. (2022). Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nature Medicine. https://doi.org/10.1038/s41591-022-02116-3 DOI: https://doi.org/10.1038/s41591-022-02116-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Infectious diseases
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0