FEATURES OF THE COURSE OF COVID-19 IN PATIENTS WITH CHRONIC HEPATITIS B AND C

Authors

DOI:

https://doi.org/10.11603/1681-2727.2022.3.13479

Keywords:

chronic hepatitis B, chronic hepatitis C, acute liver injury, COVID-19, cytokine-mediated inflammation, endothelial dysfunction, mortality

Abstract

SUMMARY. The coronavirus disease 2019 (COVID-19) has spread throughout the world. Since liver damage in patients with COVID-19 usually has a mixed genesis, the specifics of the course of the coronavirus disease in the background of chronic hepatitis B (CHB) and C (CHC) have not been definitively clarified.

This review provides information on a comparison of demographic characteristics, physical and laboratory findings, including in-hospital mortality in patients with COVID-19 with concomitant CHB and CHC and without these comorbidities.

Univariate and multivariate logistic and Cox regression models were used to examine risk factors for disease severity and mortality.

In most patients with CHB, the course of COVID-19 was severe. In addition to traditional liver tests (alanine aminotransferase levels, aspartate aminotransferase, alkaline phosphatase, total bilirubin), researchers studied factors such as lactate dehydrogenase activity (≥245 U/L, risk ratio (HR) = 8.639, 95 %) credible interval (CI) = 2.528–29.523, p<0.001) and blood coagulation biomarker level – D-dimer (≥0.5 μg/ml, HR = 4.321, 95 % CI = 1.443-12.939; p<0.005), decrease albumin index (<35 g/l, HR = 0.131, 95 % CI = 0.048-0.361; p<0.001), as well as albumin-globulin ratio (<1.5, HR = 0.123, 95 % CI = 0.017–0.918; p<0.05).

It has been established that patients with COVID-19 on the background of CHB have a significantly higher probability of a severe course of the disease, as well as death. CHC results in increased virulence of SARS-CoV-2, regardless of initial comorbidities, laboratory findings at hospitalization, or liver injury caused by SARS-CoV-2. This may be due to the extrahepatic effects of CHC, leading to cytokine-mediated inflammation and endothelial dysfunction. This combination of diseases is a strong predictor of in-hospital mortality.

Author Biographies

M. A. Andreychyn, I. Horbachevsky Ternopil National Medical University

Academician of NAMS of Ukraine, MD, Professor, the Head of the Department of Infectious Diseases and Epidemiology, Skin and Venereal Illnesses of I. Horbachevsky Ternopil National Medical University

V. S. Kopcha, I. Horbachevsky Ternopil National Medical University

MD, Professor of the Department of Infectious Diseases and Epidemiology, Skin and Venereal Illnesses, I. Horbachevsky Ternopil National Medical University

References

Tian, J., Yuan, X., Xiao, J., Zhong, Q., Yang, C., Liu, B., ... & Wang, Z. (2020). Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. The Lancet Oncology, 21 (7), 893-903.

Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol, 41(2): 145-151.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395(10229), 1054-1062.

Portincasa, P., Krawczyk, M., Machill, A., Lammert, F., & Di Ciaula, A. (2020). Hepatic consequences of COVID-19 infection. Lapping or biting?. European journal of internal medicine, 77, 18-24.

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., ... & Briggs, A. M. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392 (10159), 1789-1858.

Napodano, C., Pocino, K., Stefanile, A., Marino, M., Miele, L., Gulli, F., ... & Basile, U. (2021). COVID-19 and hepatic involvement: the liver as a main actor of the pandemic novel. Scandinavian Journal of Immunology, 93 (3), e12977.

Cai, Q., Huang, D., Yu, H., Zhu, Z., Xia, Z., Su, Y., ... & Xu, L. (2020). COVID-19: Abnormal liver function tests. Journal of hepatology, 73 (3), 566-574.

Fix, O. K., Hameed, B., Fontana, R. J., Kwok, R. M., McGuire, B. M., Mulligan, D. C., ... & Chung, R. T. (2020). Clinical best practice advice for hepatology and liver transplant providers during the COVID-19 pandemic: AASLD expert panel consensus statement. Hepatology, 72 (1), 287-304.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., ... & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8 (4), 420-422.

Wang, J., Lu, Z., Jin, M., Wang, Y., Tian, K., Xiao, J., ... & Chen, X. P. (2022). Clinical characteristics and risk factors of COVID-19 patients with chronic hepatitis B: a multi-center retrospective cohort study. Frontiers of Medicine, 16 (1), 111-125.

Veselka, J., Faber, L., Liebregts, M., Cooper, R., Januska, J., Kashtanov, M., ... & Jensen, M. K. (2019). Short-and long-term outcomes of alcohol septal ablation for hypertrophic obstructive cardiomyopathy in patients with mild left ventricular hypertrophy: a propensity score matching analysis. European Heart Journal, 40 (21), 1681-1687.

World Health Organization. (2020). Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected: interim guidance, 25 January 2020 (No. WHO/nCoV/Clinical/2020.2). World Health Organization.

Zhao, J. Y., Yan, J. Y., & Qu, J. M. (2020). Interpretations of «diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7)». Chinese Medical Journal, 133 (11), 1347-1349.

Wang, Y., Liu, S., Liu, H., Li, W., Lin, F., Jiang, L., ... & Zhao, J. (2020). SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. Journal of hepatology, 73 (4), 807-816.

Ding, J., Karp, J. E., & Emadi, A. (2017). Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers, 19 (4), 353-363.

Al Ghamdi, M., Alghamdi, K. M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., ... & Sood, G. (2016). Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC infectious diseases, 16 (1), 1-7.

Tsui, P. T., Kwok, M. L., Yuen, H., & Lai, S. T. (2003). Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerging infectious diseases, 9(9), 1064.

Spinella, R., Sawhney, R., & Jalan, R. (2016). Albumin in chronic liver disease: structure, functions and therapeutic implications. Hepatology international, 10 (1), 124-132.

Saad, M., Omrani, A. S., Baig, K., Bahloul, A., Elzein, F., Matin, M. A., ... & Albarrak, A. M. (2014). Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International Journal of Infectious Diseases, 29, 301-306.

Zhang, L., Yan, X., Fan, Q., Liu, H., Liu, X., Liu, Z., & Zhang, Z. (2020). D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. Journal of thrombosis and haemostasis, 18(6), 1324-1329.

Qi, T., Zhu, C., Lu, G., Hao, J., He, Q., Chen, Y., ... & Hou, J. (2019). Elevated D-dimer is associated with increased 28-day mortality in acute-on-chronic liver failure in China: a retrospective study. BMC gastroenterology, 19(1), 1-10.

Tripodi, A. (2017, March). Hemostasis in acute and chronic liver disease. In Seminars in Liver Disease (Vol. 58, No. 01, pp. 028-032). Thieme Medical Publishers.

Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood, 135(23), 2033-2040.

Duan, Z. P., Chen, Y., Zhang, J., Zhao, J., Lang, Z. W., Meng, F. K., & Bao, X. L. (2003). Clinical characteristics and mechanism of liver injury in patients with severe acute respiratory syndrome. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology, 11 (8), 493-496 [in Chinese].

Cao, X. (2020). COVID-19: immunopathology and its implications for therapy. Nature reviews immunology, 20(5), 269-270.

Lei, F., Liu, Y. M., Zhou, F., Qin, J. J., Zhang, P., Zhu, L., ... & Yuan, Y. (2020). Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology, 72(2), 389-398.

Chen, T., Wu, D. I., Chen, H., Yan, W., Yang, D., Chen, G., ... & Ning, Q. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. bmj, 368.

Ronderos, D., Omar, A. M. S., Abbas, H., Makker, J., Baiomi, A., Sun, H., ... & Chilimuri, S. (2021). Chronic hepatitis-C infection in COVID-19 patients is associated with in-hospital mortality. World Journal of Clinical Cases, 9 (29), 8749.

Reddy, K. R. (2020). SARS-CoV-2 and the Liver: Considerations in Hepatitis B and Hepatitis C Infections. Clin Liver Dis (Hoboken), 15:191–194.

Des Jarlais, D. C., Cooper, H. L. F., Arasteh, K., Feelemyer, J., McKnight, C., & Ross, Z. (2018). Potential geographic» hotspots» for drug-injection related transmission of HIV and HCV and for initiation into injecting drug use in New York City, 2011-2015, with implications for the current opioid epidemic in the US. PloS one, 13 (3), e0194799.

Phipps, M. M., Barraza, L. H., LaSota, E. D., Sobieszczyk, M. E., Pereira, M. R., Zheng, E. X., ... & Verna, E. C. (2020). Acute liver injury in COVID-19: prevalence and association with clinical outcomes in a large US cohort. Hepatology, 72 (3), 807-817.

Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. V., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 203 (2), 631-637.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., ... & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2), 271-280.

Esumi, M., Ishibashi, M., Yamaguchi, H., Nakajima, S., Tai, Y., Kikuta, S., ... & Wakita, T. (2015). Transmembrane serine protease TMPRSS2 activates hepatitis C virus infection. Hepatology, 61 (2), 437-446.

Gill, K., Ghazinian, H., Manch, R., & Gish, R. (2016). Hepatitis C virus as a systemic disease: reaching beyond the liver. Hepatology international, 10 (3), 415-423.

Hisada, M., Chatterjee, N., Kalaylioglu, Z., Battjes, R. J., & Goedert, J. J. (2005). Hepatitis C virus load and survival among injection drug users in the United States. Hepatology, 42 (6), 1446-1452.

Tamori, A., Enomoto, M., Kobayashi, S., Iwai, S., Morikawa, H., Sakaguchi, H., ... & Kawada, N. (2010). Add-on combination therapy with adefovir dipivoxil induces renal impairment in patients with lamivudine-refractory hepatitis B virus. Journal of viral hepatitis, 17 (2), 123-129.

Hofmann, S. R., Ettinger, R., Zhou, Y. J., Gadina, M., Lipsky, P., Siegel, R., ... & O’Shea, J. J. (2002). Cytokines and their role in lymphoid development, differentiation and homeostasis. Current opinion in allergy and clinical immunology, 2 (6), 495-506.

Rehermann, B. (2009). Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. The Journal of clinical investigation, 119(7), 1745-1754.

Gadotti, A. C., de Castro Deus, M., Telles, J. P., Wind, R., Goes, M., Ossoski, R. G. C., ... & Tuon, F. F. (2020). IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus research, 289, 198171.

de Souza-Cruz, S., Victória, M. B., Tarragô, A. M., da Costa, A. G., Pimentel, J. P. D., Pires, E. F., ... & Malheiro, A. (2016). Liver and blood cytokine microenvironment in HCV patients is associated to liver fibrosis score: a proinflammatory cytokine ensemble orchestrated by TNF and tuned by IL-10. BMC microbiology, 16 (1), 1-12.

Oliveira, C. P. M. S., Kappel, C. R., Siqueira, E. R., Lima, V. M. R., Stefano, J. T., Michalczuk, M. T., ... & Alvares-da-Silva, M. R. (2013). Effects of hepatitis C virus on cardiovascular risk in infected patients: a comparative study. International journal of cardiology, 164 (2), 221-226.

Barone, M., Viggiani, M. T., Amoruso, A., Schiraldi, S., Zito, A., Devito, F., ... & Ciccone, M. M. (2015). Endothelial dysfunction correlates with liver fibrosis in chronic HCV infection. Gastroenterology Research and Practice, 2015.

Perico, L., Benigni, A., Casiraghi, F., Ng, L. F., Renia, L., & Remuzzi, G. (2021). Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 17 (1), 46-64.

Ronderos Botero, D. M., Omar, A. M. S., Sun, H. K., Mantri, N., Fortuzi, K., Choi, Y., ... & Chilimuri, S. (2020). COVID-19 in the healthy patient population: demographic and clinical phenotypic characterization and predictors of in-hospital outcomes. Arteriosclerosis, thrombosis, and vascular biology, 40 (11), 2764-2775.

Published

2023-01-26

How to Cite

Andreychyn, M. A., & Kopcha, V. S. (2023). FEATURES OF THE COURSE OF COVID-19 IN PATIENTS WITH CHRONIC HEPATITIS B AND C . Infectious Diseases – Infektsiyni Khvoroby, (3), 31–37. https://doi.org/10.11603/1681-2727.2022.3.13479

Issue

Section

Reviews and lectures