REFLECTIONS ON THE TREATMENT AND PREVENTIVE PROSPECTIVITY OF VARIOUS AGENTS AT COVID-19

Authors

DOI:

https://doi.org/10.11603/1681-2727.2020.2.11286

Keywords:

COVID-19, epidemiology, pathohistology, pathogenesis, treatment, prophylaxis

Abstract

The aim of the work is to identify promising areas of further therapy and prevention on the basis of comparing the features of previous epidemics of coronavirus infections and analysis of pathohistology, pathogenesis of COVID-19 and the experience of empirically approved treatment of such patients.

Information over is brought about reverse dependence in a number of SARS→MERS→COVID-19 geographical prevalence with a latent period and lethality.

In pathogenesis of COVID-19 two basic nosotropic mechanisms are distinguished: direct viral damage of epithelium of lungs, endotheliocytes of capillaries and tissue pulmonary desmocytes, and also making progress used for setting fire reaction, which is accompanied by a “cytokine storm” which at first can result in an “acute respiratory distress syndrome”, and then – to the so-called syndrome of the abrupt used for setting fire reply. Thus, pathogenesis of COVID-19 alike with influenzal “hemorragic pneumonias” or influenzal hemorragic pulmonary edema. It enables to assume the primary value of not ethiotropic, but nosotropic antioedematous, antiinflammatory and angioprotective therapies of patients with COVID-19.

Perspective prophylactic concerning COVID-19 agents are seemed by the prepared interferons or inductors of interferonоgenesis.

Author Biographies

A. M. Bondarenko, Clinical Hospital N 2 of Kryvyi Rih, Center of Health of Kryvyi Rih

MD, Head of the Department of Ecology, Kryvyi Rih National University; Head of the Center for the Diagnosis and Treatment of Infectious Diseases, Kryvyi Rih

V. S. Kopcha, I. Horbachevsky Ternopil National Medical University

MD, Professor of the Infectious Diseases and Epidemiology, Skin and Venereal Diseases Department, I. Horbachevsky Ternopil National Medical University

References

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., & Han, Y. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395: 507-513. www.thelancet.com https://doi.org/10.1016/S0140-6736(20)30211-7

Stovba, L.F., Lebedev, V.N., Petrov, A.A., Ruchko, V.M., Kulish, V.S., Borisevich, S.V. (2015). A new coronavirus that causes human disease. Problemy osobo opasnykh infektsiy – Problems of Extrahazardous Infections, 2, 68-74 [in Russian].

Gralinski, L.E., & Baric, R.S. (2015). Molecular pathology of emerging coronavirus infections. J. Pathol., 235, 185-195. Retrieved from: https://doi.org/ 10.1002/path.4454

Tian, S., Hu, W., Niu, L., Liu, H., Xu, H., & Xiao, S.Y. (2020). Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 20, 30132-30135.

Bondarenko, A.M. (2009). Influenza A / H1N1 – realities and features. Infektsiini khvoroby – Infectious Diseases, 4, 96-102 [in Ukrainian].

Kopcha, V.S., & Bondarenko, A.N. (2011). Influenza: pneumonia or pulmonary edema? Features of pathogenesis and treatment. Zdravookhraneniye Belorussii – Health Protection of Belorussia, 2, 44-49 [in Russian].

Bondarenko, A.M., Andreychyn, M.A., & Kopcha, V.S. (2011). Patent 63098. Ukraine, IPC A61K 31/573 (2006.01). A method of treating influenza hemorrhagic pulmonary edema. Bulletin, 18 [in Ukrainian].

Kopcha, V.S., & Kopcha, Yu.V. (2014). Pathogenetic substantiation of treatment of patients with influenza and other ARVI. Infektsiini khvoroby – Infectious Diseases, 4 (78), 64-70 [in Ukrainian].

Zupanets, I.A., Holubovska, O.A., Shkurba, A.V., Shebeko, S., & Shalamay, A.S. (2020). Prospects for studying the use of quercetin drugs in the treatment of COVID-19. Ukrainskyi medychnyi chasopys – Ukrainian Medical Herald, 2 (1). Retrieved from: https://www.umj.com.ua/article/177136/perspektivi-vivchennya-zastosuvannya-preparativ-kvertsetinu-v-likuvanni-covid-19 [in Ukrainian].

Kumar, P., Khanna, M., Srivastava, V., Tyagi, Y.K., Raj, H.G., & Ravi, K. (2005). Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Exp. Lung. Res., 31 (5), 449-459.

Marik, P. (2020). EVMS critical care COVID-19 management protocol. Retrieved from: https://www.evms.edu/media/evms_public/departments/internal_medicine/EVMS_Critical_Care_COVID-19_Protocol.pdf.

Askari, G., Ghiasvand, R., Feizi, A., Ghanadian, S. M., & Karimian, J. (2012). The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J. Res. Med. Sci., 6: 637-641.

Taylor-Vaisey, N. (2020). A made-in-Canada solution to the coronavirus outbreak? Retrieved from: https://www.macleans.ca/news/canada/a-made-in-canada-solution-to-the-coronavirus-outbreak/

Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., ... & Cheng, V. C. C. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361 (9366), 1319-1325.

Liang, T. (2020). Handbook of COVID-19. Prevention and Treatment. Zhejiang University School of Medicine.

Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International Journal of Biological Sciences, 16 (10), 1708.

Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., ... & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395 (10234), 1417-1418. DOI: 10.1016/S0140-6736(20)30937-5.

Lukanchuk, V.D., & Voytenko, A.H. (2008). Kinetics of free radical reactions in rats with drug-induced hepatitis when using Quercetin tablets. Farmakolohiia ta likarska toksykolohiia – Pharmacology and Medical Toxicology, 1-3, 52-57 [in Ukrainian].

Supotnitskiy, M.V. (2020). New coronavirus SARS-CoV-2 in the aspect of the global epidemiology of coronavirus infections. Vestnik voysk RKHB zashchity – Journal of NBC Protection Corps, 4 (1), 32-65 [in Russian].

Menachery, V. D., Yount Jr, B. L., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., ... & Randell, S.H. (2015). A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine, 21 (12), 1508-1513. Retrieved from: https://doi.org/ 10.1038/nm.3985/

Yip, M.S., Leung, N.H.L., Cheung, C.Y., Li, P.H., Lee, H.H.Y., Daëron, M., ... & Jaume, M. (2014). Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology Journal, 11, 82. Retrieved from: https://doi.org/10.1186/1743-422X-11-82

Yip, M. S., Cheung, C. Y., Li, P. H., Bruzzone, R., Peiris, J. M., & Jaume, M. (2011, December). Investigation of Antibody-Dependent Enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS. In BMC proceedings (Vol. 5, No. S1, p. P80). BioMed Central.

Jaume, M., Yip, M. S., Kam, Y. W., Cheung, C. Y., Kien, F., Roberts, A., ... & Bruzzone, R. (2012). SARS CoV subunit vaccine: antibodymediated neutralisation and enhancement. Hong Kong Med. J., 18 (2), 31-36.

Wang, S. F., Tseng, S. P., Yen, C. H., Yang, J. Y., Tsao, C. H., Shen, C. W., ... & Huang, J. C. (2014). Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochemical and Biophysical Research Communications, 451, 208-214. Retrieved from: https://doi.org/10.1016/j.bbrc.2014.07.090

DW. Made for minds (16.06.2020). In Great Britain declared about a breach in treatment of COVID-19. Retrieved from: https://www.dw.com/uk/u-velykobrytanii-zaiavyly-pro-proryv-u-likuvanni-covid-19/a-53830442?maca=ukr-rss-ukrnet-ukr-all-3816-xml [in Ukrainian].

MHU (25.06.2020). Ministry of health of Ukraine entered Dexamethazonum in the minutes of COVID-19 treatment. Retrieved from: https://prm.ua/moz-vneslo-do-protokolu-likuvannya-covid-19-deksametazon/ [in Ukrainian].

Published

2020-08-11

How to Cite

Bondarenko, A. M., & Kopcha, V. S. (2020). REFLECTIONS ON THE TREATMENT AND PREVENTIVE PROSPECTIVITY OF VARIOUS AGENTS AT COVID-19. Infectious Diseases – Infektsiyni Khvoroby, (2), 56–64. https://doi.org/10.11603/1681-2727.2020.2.11286

Issue

Section

Reviews and lectures