CORONAVIRUS INFECTIONS FOR MAN

Authors

DOI:

https://doi.org/10.11603/1681-2727.2020.2.11284

Keywords:

coronaviruses, SARS, MERS, COVID-19, HCoV-NL63, of HCoV-HKU1

Abstract

Until 2003, only two human coronaviruses (HCoV) were known to cause mild respiratory damage. Outbreaks of severe acute respiratory syndrome (SARS), Middle Eastern respiratory syndrome (MERS), and COVID-19 later brought worldwide attention to emergent coronavirus infections and the evolution of their pathogens. The situation with COVID-19 has shown how destructive and life-threatening a coronavirus infection can be. Current data on coronaviruses that can infect humans are presented. The peculiarities of the structure and classification of coronaviruses are indicated, their evolutionary path is analyzed.

Author Biographies

V. P. Shyrobokov, O. Bogomolets National Medical University

MD, Professor, Academician of the National Academy of Sciences of Ukraine and National Academy of Medical Sciences of Ukraine, a head of the Department of Microbiology, Virology and Immunology, O. Bohomolets National Medical University

V. A. Poniatovsky, O. Bogomolets National Medical University

PhD, Associate Professor of the Department of Microbiology, Virology and Immunology, O. Bohomolets National Medical University

References

Andreychyn, M.A. (2019). The problem of emergent infections in Ukraine. Infektsiini khvoroby – Infectious Diseases, 4 (98), 4-9 [in Ukrainian].

Liu, Y., Kuo, R. and Shih, S. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical Journal. DOI: 10.1016/j.bj.2020.04.007. [Epub ahead of print].

Worldometers: COVID-19 Coronavirus pandemic. Last updated: 21.05.2020. Electronic resource. Retrieved from: https://www.worldometers.info/coronavirus/

Andrianova, T.V., Bobyr, V.V., Danyleichenko, V.V. etc.; Ed. by Shyrobokov, V.P. (2019). Medical Microbiology Virology Immunology : a textbook for English-speaking students of higher medical schools: translation from ukr. Published. Vinnytsia: Nova Knyha.

Parks, J., & Smith, J. (2020). How to discover antiviral drugs quickly. New England Journal of Medicine. DOI: 10.1056/NEJMcibr2007042.

ICTV: Virus Taxonomy: 2019 Release. – July 2019. Electronic resource. Retrieved from: https://talk.ictvonline.org/taxonomy/

Su, S., Wong, G., Shi, W., Liu, J., Lai, A., Zhou, J. … Gao, G. (2016). Epidemiology, genetic recombination, and pathogenesis of Coronaviruses. Trends in Microbiology, 24 (6), 490-502.

Tang, T., Bidon, M., Jaimes, J., Whittaker, G., & Daniel, S. (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research, 178, 104792.

Bosch, B., van der Zee, R., de Haan, C., & Rottier, P. (2003). The Coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology, 77 (16), 8801-8811.

Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z. … Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181 (4), 894-904.e9.

Simmons, G., Gosalia, D., Rennekamp, A., Reeves, J., Diamond, S. and Bates, P. (2005). Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proceedings of the National Academy of Sciences, 102(33), 11876-11881.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S. … Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2), 271-280.e8.

Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 202003138.

Tyrrell, D. and Bynoe, M. (1965). Cultivation of a novel type of common-cold virus in organ cultures. BMJ, 1 (5448), 1467-1470.

Myint, S.H. (1995). The Coronaviridae. Human Coronavirus Infections. Springer, Boston, MA. DOI:10.1007/978-1-4899-1531-3_18.

Hamre, D. & Procknow, J.J. (1966). A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med., 121, 190-193.

Mclntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., & Chanock, R.M. (1967). Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proe. Natl. Aead. Sei. USA, 57(4), 933-940.

Hulswit, R., Lang, Y., Bakkers, M., Li, W., Li, Z., Schouten, A. … de Groot, R. (2019). Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences, 116 (7), 2681-2690.

Li, Z., Tomlinson, A., Wong, A., Zhou, D., Desforges, M., Talbot, P. … Rini, J. (2019). The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife, 8.

Tyrrell, D., Cohen, S., & Schilarb, J. (1993). Signs and symptoms in common colds. Epidemiology and Infection, 111 (1), 143-156.

Vassilara, F., Spyridaki, A., Pothitos, G., Deliveliotou, A., & Papadopoulos, A. (2018). A rare case of human Coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult. Case Reports in Infectious Diseases, 2018, 1-4.

WHO: Severe acute respiratory syndrome. (2020). Electronic resource. Retrieved from: http://www.emro.who.int/health-topics/severe-acute-respiratory-syndrome/

Li, W., Moore, M., Vasilieva, N., Sui, J., Wong, S., Berne, M. … Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426 (6965), 450-454.

Suzuki, A., Okamoto, M., Ohmi, A., Watanabe, O., Miyabayashi, S. and Nishimura, H. (2005). Detection of human Coronavirus-NL63 in children in Japan. The Pediatric Infectious Disease Journal, 24 (7), 645-646.

Van der Hoek, L., Pyrc, K., & Berkhout, B. (2006). Human coronavirus NL63, a new respiratory virus. FEMS Microbiology Reviews, 30 (5), 760-773.

Van der Hoek, L., Pyrc, K., Jebbink, M., Vermeulen-Oost, W., Berkhout, R., Wolthers, K. … & Berkhout, B. (2004). Identification of a new human coronavirus. Nature Medicine, 10 (4), 368-373.

Hofmann, H., Pyrc, K., Van Der Hoek, L., Geier, M., Berkhout, B. & Pohlmann, S. (2005). Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA, 102, 7988-7993.

Woo, P., Lau, S., Chu, C., Chan, K., Tsoi, H., Huang, Y. … and Yuen, K. (2005). Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. Journal of Virology, 79 (2), 884-895.

Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., & Freymuth, F. (2006). Detection of the new human Coronavirus HKU1: A report of 6 cases. Clinical Infectious Diseases, 42 (5), 634-639.

Pyrc, K., Sims, A., Dijkman, R., Jebbink, M., Long, C., Deming, D. … Pickles, R. (2010). Culturing the unculturable: Human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway Epithelial cell cultures. Journal of Virology, 84 (21), 11255-11263.

Bosis, S., Esposito, S., Niesters, H.G., Tremolati, E., Pas, S., Principi, N., & Osterhaus, A.D. (2007). Coronavirus HKU1 in an Italian pre-term infant with bronchiolitis. J. Clin. Virol., 38, 251-253.

Pyrc, K., Berkhout, B., & van der Hoek., L. (2007). The novel human coronaviruses NL63 and HKU1. J. Virol., 81, 3051-3057.

Cui, L., Zhang, C., Zhang, T., Lu, R., Xie, Z., Zhang … Tan, W. (2011). Human Coronaviruses HCoV-NL63 and HCoV-HKU1 in hospitalized children with acute respiratory infections in Beijing, China. Advances in Virology, 1-6.

Zaki, A., van Boheemen, S., Bestebroer, T., Osterhaus, A., & Fouchier, R. (2012). Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 367 (19), 1814-1820.

WHO: Epidemic and pandemic-prone diseases (MERS situation update, January 2020). Electronic resource. Retrieved from: http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-january-2020.html.

Raj, V., Mou, H., Smits, S., Dekkers, D., Müller, M., Dijkman, R. … Haagmans, B. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495 (7440), 251-254.

Coronaviridae Study Group of the International Committee on Taxonomy of V. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5 (4), 536-544.

Andersen, K., Rambaut, A., Lipkin, W., Holmes, E. and Garry, R. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26 (4), 450-452.

Corman, V., Baldwin, H., Tateno, A., Zerbinati, R., Annan, A., Owusu … Drexler, J. (2015). Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. Journal of Virology, 89 (23), 11858-11870.

Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J. … Donaldson, E. (2012). Evidence supporting a zoonotic origin of human Coronavirus strain NL63. Journal of Virology, 86 (23), 12816-12825.

Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A., & Van Ranst, M. (2005). Complete genomic sequence of human Coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic Coronavirus transmission event. Journal of Virology, 79 (3), 1595-1604.

Cui, J., Li, F. and Shi, Z. (2018). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17 (3), 181-192.

Lau, S., Li, K., Huang, Y., Shek, C., Tse, H., Wang, M. … Yuen, K. (2010). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related rhinolophus bat Coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. Journal of Virology, 84 (6), 2808-2819.

Van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T., Raj, V., Zaki, A. … Fouchier, R. (2012). Genomic characterization of a newly discovered Coronavirus associated with acute respiratory distress syndrome in humans. mBio, 3(6).

Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology, 30 (7), 1346-1351.e2.

Gaunt, E., Hardie, A., Claas, E., Simmonds, P., & Templeton, K. (2010). Epidemiology and clinical presentations of the four human Coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. Journal of Clinical Microbiology, 48 (8), 2940-2947.

Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. … Mueller, J. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728, 138764. (Online ahead of print).

Karimi-Zarchi, M., Neamatzadeh, H., Dastgheib, S., Abbasi, H., Mirjalili, S., Behforouz, A., Ferdosian, F., & Bahrami, R. (2020). Vertical transmission of Coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: A review. Fetal and Pediatric Pathology, 1-5. (Online ahead of print).

Merad, M., & Martin, J. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 20, 355-362.

Ni, L., Ye, F., Cheng, M.-L., Feng, Y., Deng, Y.-Q., Zhao, H., … Dong, C. (2020). Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. DOI:10.1016/j.immuni.2020.04.023. [Epub ahead of print].

Zhou, P., Yang, X., Wang, X., Hu, B., Zhang, L., Zhang, W. … Shi, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579 (7798), 270-273.

Published

2020-08-11

How to Cite

Shyrobokov, V. P., & Poniatovsky, V. A. (2020). CORONAVIRUS INFECTIONS FOR MAN. Infectious Diseases – Infektsiyni Khvoroby, (2), 31–40. https://doi.org/10.11603/1681-2727.2020.2.11284

Issue

Section

Reviews and lectures