KLEBSIELLA PNEUMONIAE – THE LEADING CAUSE OF WOUND INFECTION

Authors

DOI:

https://doi.org/10.11603/1681-2727.2025.2.15299

Keywords:

K. pneumoniae strains, antibiotic sensitivity, wound infection, mine-explosive injuries

Abstract

SUMMARY. The aim of the work is to determine the microbiome of wound infection, to study the sensitivity of clinical isolates of K. pneumoniae to the action of antibacterial drugs of different groups.

Patients and methods. The study involved 96 patients with wound infection resulting from mine-explosive injuries (men aged 20 to 45 years). The main selection criteria were the patient’s status as a military serviceman, the fact that the patient had received a mine-explosive injury in combat conditions, the presence of the results of a microbiological examination of the wound, which was considered a sign of the presence of an infectious process or suspicion of it. The analysis of the microbiome of wound infection was carried out by the bacteriological method of research. Determination of sensitivity to antibiotics was done by the disk-diffusion method.

Research results and their discussion. 46 strains were isolated from wound contents of patients, among which in 39.0 % of cases the leading etiological factor of wound infection was K. pneumoniae, in 28.0 % – S. aureus, P. aeruginosa (13.0 %), Acinetobacter spp (8.7 %) and the specific weight of isolated strains of E. faecalis and E. coli was (4.3 %) and (6.5 %), respectively. The highest antibiotic resistance to different classes of antibacterial drugs was observed in half of isolated cultures of K. pneumoniae, among which polyresistant strains prevailed.

Conclusions. Analysis of the level of antibiotic sensitivity of isolated clinical strains of K. pneumoniae demonstrated low rates. The most sensitive strains of K. pneumoniae were found to amikacin and gentamicin (45.4 %), sensitivity to piperacillin/tazobactam was 36.3 %, and the number of strains sensitive to ceftazidime, meropenem, levofloxacin and ciprofloxacin was 27.2 %. The antibiotics amoxicillin, ampicillin, ceftriaxone, cefepime, cefoperazone, cefepime, cefotaxime, imepenem had less activity, the sensitivity to which was almost 9 %.

Author Biographies

O. V. Kotsar, Kharkiv National Medical University

PhD, Associate Professor of the prof. D. P. Hrynyov Department of Microbiology, Virology and Immunology

O. V. Kochnieva, Kharkiv National Medical University

PhD, senior lecturer of the prof. D. P. Hrynyov Department of Microbiology, Virology and Immunology

References

Ljungquist, O., Nazarchuk, O., Kahlmeter, G., Andrews, V., Koithan, T., Wasserstrom, L., ... & Riesbeck, K. (2023). Highly multidrug-resistant Gram-negative bacterial infections in war victims in Ukraine, 2022. DOI: 10.1016/S1473-3099(23)00291-8. DOI: https://doi.org/10.1016/S1473-3099(23)00291-8

Schultze, T., Hogardt, M., Velázquez, E. S., Hack, D., Besier, S., Wichelhaus, T. A., ... & Reinheimer, C. (2023). Molecular surveillance of multidrug-resistant Gram-negative bacteria in Ukrainian patients, Germany, March to June 2022. Eurosurveillance, 28(1), 2200850. DOI: 10.2807/1560-7917.ES.2023.28.1.2200850. DOI: https://doi.org/10.2807/1560-7917.ES.2023.28.1.2200850

Kovalchuk, V., Kondratiuk, V., McGann, P., Jones, B. T., Fomina, N., Nazarchuk, O., ... & Kovalenko, I. (2024). Temporal evolution of bacterial species and their antimicrobial resistance characteristics in wound infections of war-related injuries in Ukraine from 2014 to 2023. Journal of Hospital Infection, 152, 99-104. DOI: 10.1016/j.jhin.2024.06.011. DOI: https://doi.org/10.1016/j.jhin.2024.06.011

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), 629-655. DOI: 10.1016/S0140-6736(21)02724-0. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0

Granata, G., Petersen, E., Capone, A., Donati, D., Andriolo, B., Gross, M., ... & Petrosillo, N. (2024). The impact of armed conflict on the development and global spread of antibiotic resistance: a systematic review. Clinical Microbiology and Infection. DOI: 10.1016/j.cmi.2024.03.029. DOI: https://doi.org/10.1016/j.cmi.2024.03.029

Loban’, G., Faustova, M., Dobrovolska, O., & Tkachenko, P. (2023). War in Ukraine: incursion of antimicrobial resistance. Irish Journal of Medical Science (1971-), 192(6), 2905-2907. DOI: 10.1007/s11845-023-03401-x. DOI: https://doi.org/10.1007/s11845-023-03401-x

Li, Y., Kumar, S., Zhang, L., Wu, H., & Wu, H. (2023). Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Medicine, 18(1), 20230707. DOI: 10.1515/med-2023-0707. DOI: https://doi.org/10.1515/med-2023-0707

Ljungquist, O., Magda, M., Giske, CG, Tellapragada, C., Nazarchuk, O., Dmytriiev, D., ... & Riesbeck, K. (2024). Панрезистентні Klebsiella pneumoniae, виділені від українських жертв війни, є гіпервірулентними. Journal of Infection , 89 (6), 106312. DOI: 10.1016/j.jinf.2024.106312. DOI: https://doi.org/10.1016/j.jinf.2024.106312

Guerra, M. E. S., Destro, G., Vieira, B., Lima, A. S., Ferraz, L. F. C., Hakansson, A. P., ... & Converso, T. R. (2022). Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Frontiers in cellular and infection microbiology, 12, 877995. DOI: 10.3389/fcimb.2022.877995. DOI: https://doi.org/10.3389/fcimb.2022.877995

Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International journal of environmental research and public health, 17(17), 6278. DOI: 10.3390/ijerph17176278.

Dunn, S. J., Connor, C., & McNally, A. (2019). The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: the complexity of clones and plasmids. Current opinion in microbiology, 51, 51-56. DOI: 10.1016/j.mib.2019.06.004. DOI: https://doi.org/10.1016/j.mib.2019.06.004

Yang, X., Liu, X., Chan, E. W. C., Zhang, R., & Chen, S. (2023). Functional characterization of plasmid-borne rmpADC homologues in Klebsiella pneumoniae. Microbiology spectrum, 11(3), e03081-22. DOI: 10.1128/spectrum.03081-22. DOI: https://doi.org/10.1128/spectrum.03081-22

Kochan, T. J., Nozick, S. H., Valdes, A., Mitra, S. D., Cheung, B. H., Lebrun-Corbin, M., ... & Hauser, A. R. (2023). Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence. Nature communications, 14(1), 7962. DOI: 10.1038/s41467-023-43802-1. DOI: https://doi.org/10.1038/s41467-023-43802-1

Song, S., Zhao, S., Wang, W., Jiang, F., Sun, J., Ma, P., & Kang, H. (2023). Characterization of ST11 and ST15 carbapenem-resistant hypervirulent Klebsiella pneumoniae from patients with ventilator-associated pneumonia. Infection and Drug Resistance, 6017-6028. DOI: 10.2147/IDR.S426901. DOI: https://doi.org/10.2147/IDR.S426901

Nang, S. C., Morris, F. C., McDonald, M. J., Han, M. L., Wang, J., Strugnell, R. A., ... & Li, J. (2018). Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73(6), 1604-1610. DOI: 10.1093/jac/dky061. DOI: https://doi.org/10.1093/jac/dky061

Coppi, M., Antonelli, A., Niccolai, C., Bartolini, A., Bartolini, L., Grazzini, M., ... & Rossolini, G. M. (2022). Nosocomial outbreak by NDM-1-producing Klebsiella pneumoniae highly resistant to cefiderocol, Florence, Italy, August 2021 to June 2022. Eurosurveillance, 27(43), 2200795. DOI: 10.2807/1560-7917.ES.2022.27.43.2200795. DOI: https://doi.org/10.2807/1560-7917.ES.2022.27.43.2200795

Walker, K. A., Miner, T. A., Palacios, M., Trzilova, D., Frederick, D. R., Broberg, C. A., ... & Miller, V. L. (2019). A Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity. MBio, 10(2), 10-1128. DOI: 10.1128/mBio.00089-19. DOI: https://doi.org/10.1128/mBio.00089-19

Chen, X., Li, P., Sun, Z., Xu, X., Jiang, J., & Su, J. (2022). Insertion sequence mediating mrgB disruption is the major mechanism of polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae isolates from China. Journal of Global Antimicrobial Resistance, 30, 357-362. DOI: 10.1016/j.jgar.2022.07.002. DOI: https://doi.org/10.1016/j.jgar.2022.07.002

Russo, T. A., Olson, R., Fang, C. T., Stoesser, N., Miller, M., MacDonald, U., ... & Johnson, J. R. (2018). Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. Journal of clinical microbiology, 56(9), 10-1128. DOI: 10.1128/JCM.00776-18. DOI: https://doi.org/10.1128/JCM.00776-18

Han, R., Niu, M., Liu, S., Mao, J., Yu, Y., & Du, Y. (2022). The effect of siderophore virulence genes entB and ybtS on the virulence of сarbapenem-resistant Klebsiella pneumoniae. Microbial pathogenesis, 171, 105746. DOI: 10.1016/j.micpath.2022.105746. DOI: https://doi.org/10.1016/j.micpath.2022.105746

Zwittink, R. D., Wielders, C. C., Notermans, D. W., Verkaik, N. J., Schoffelen, A. F., Witteveen, S., ... & Hendrickx, A. P. (2022). Multidrug-resistant organisms in patients from Ukraine in the Netherlands, March to August 2022. Eurosurveillance, 27(50), 2200896. DOI: 10.2807/1560-7917.ES.2022.27.50.2200896. DOI: https://doi.org/10.2807/1560-7917.ES.2022.27.50.2200896

Ferdinand, A. S., McEwan, C., Lin, C., Betham, K., Kandan, K., Tamolsaian, G., ... & Howden, B. P. (2024). Development of a cross-sectoral antimicrobial resistance capability assessment framework. BMJ Global Health, 9(1). DOI: 10.1136/bmjgh-2023-013280. DOI: https://doi.org/10.1136/bmjgh-2023-013280

Asghar, A., Khalid, A., Baqar, Z., Hussain, N., Saleem, M. Z., Sairash, & Rizwan, K. (2024). An insights into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks. Archives of Microbiology, 206(2), 72. DOI: 10.1007/s00203-023-03800-9. DOI: https://doi.org/10.1007/s00203-023-03800-9

Asgedom, A. A. (2024). Status of infection prevention and control (IPC) as per the WHO standardised Infection Prevention and Control Assessment Framework (IPCAF) tool: Existing evidence and its implication. Infection Prevention in Practice, 100351. DOI: 10.1016/j.infpip.2024.100351. DOI: https://doi.org/10.1016/j.infpip.2024.100351

Sim, J. X. Y., Pinto, S., & van Mourik, M. S. (2024). Comparing automated surveillance systems for detection of pathogen-related clusters in healthcare settings. Antimicrobial Resistance & Infection Control, 13(1), 69. DOI: https://doi.org/10.1186/s13756-024-01413-5. DOI: https://doi.org/10.1186/s13756-024-01413-5

UKRBIO Лабораторне обладнання. ukrbio.com.ua. Retrieved from http://ukrbio.com.ua/images/docs/EUCAST_2015_ru.pdf [in Ukrainian].

Antimicrobial resistance: global report on surveillance. (2014). World Health Organization. Geneva, 232 р.

Rock, C., Thom, K. A., Masnick, M., Johnson, J. K., Harris, A. D., & Morgan, D. J. (2014). Frequency of Klebsiella pneumoniae carbapenemase (KPC)–producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infection Control & Hospital Epidemiology, 35(4), 426-429. DOI: 10.1086/675598. DOI: https://doi.org/10.1086/675598

Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Jones, L., Delannoy-Vieillard, A. S., ... & Brisse, S. (2014). Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerging infectious diseases, 20(11), 1812. DOI: 10.3201/eid2011.140206. DOI: https://doi.org/10.3201/eid2011.140206

Hennequin, C., & Robin, F. (2016). Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. European journal of clinical microbiology & infectious diseases, 35, 333-341. DOI: 10.1007/s10096-015-2559-7. DOI: https://doi.org/10.1007/s10096-015-2559-7

Lob, S. H., Hackel, M. A., Kazmierczak, K. M., Young, K., Motyl, M. R., Karlowsky, J. A., & Sahm, D. F. (2017). In vitro activity of imipenem-relebactam against gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART global surveillance program). Antimicrobial agents and chemotherapy, 61(6), 10-1128. DOI: 10.1093/jac/dky107. DOI: https://doi.org/10.1128/AAC.02209-16

Cizmeci, Z., Aktas, E., Otlu, B., Acikgoz, O., & Ordekci, S. (2017). Molecular characterization of carbapenem-resistant Enterobacteriaceae yields increasing rates of NDM-1 carbapenemases and colistin resistance in an OXA-48-endemic area. Journal of Chemotherapy, 29(6), 344-350. DOI: 10.1080/1120009X.2017.1323149. DOI: https://doi.org/10.1080/1120009X.2017.1323149

Li, B., Zhao, Y., Liu, C., Chen, Z., & Zhou, D. (2014). Molecular pathogenesis of Klebsiella pneumoniae. Future microbiology, 9(9), 1071-1081. DOI: 10.2217/fmb.14.48. DOI: https://doi.org/10.2217/fmb.14.48

Navon-Venezia, S., Kondratyeva, K., & Carattoli, A. (2017). Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS microbiology reviews, 41(3), 252-275. DOI: 10.1093/femsre/fux013.

Navon-Venezia, S., Kondratyeva, K., & Carattoli, A. (2017). Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS microbiology reviews, 41(3), 252-275. DOI: 10.1128/MMBR.00078-15. DOI: https://doi.org/10.1093/femsre/fux013

Pitout, J. D., Nordmann, P., & Poirel, L. (2015). Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrobial agents and chemotherapy, 59(10), 5873-5884. DOI: 10.1128/AAC.01019-15. DOI: https://doi.org/10.1128/AAC.01019-15

Ramirez, M. S., Traglia, G. M., Lin, D. L., Tran, T., & Tolmasky, M. E. (2014). Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiology spectrum, 2(5), 10-1128. DOI: 10.1128/microbiolspec.PLAS-0016-2013. DOI: https://doi.org/10.1128/microbiolspec.PLAS-0016-2013

Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International journal of environmental research and public health, 17(17), 6278. DOI: 10.3390/ijerph17176278. DOI: https://doi.org/10.3390/ijerph17176278

Wyres, K. L., Lam, M. M., & Holt, K. E. (2020). Population genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, 18(6), 344-359. DOI: 10.1038/s41579-019-0315-1. DOI: https://doi.org/10.1038/s41579-019-0315-1

Kiley, J. L., Mende, K., Beckius, M. L., Kaiser, S. J., Carson, M. L., Lu, D., ... & Blyth, D. M. (2021). Resistance patterns and clinical outcomes of Klebsiella pneumoniae and invasive Klebsiella variicola in trauma patients. PloS one, 16(8), e0255636. DOI: 10.1371/journal.pone.0255636. DOI: https://doi.org/10.1371/journal.pone.0255636

Published

2025-06-04

How to Cite

Kotsar, O. V., & Kochnieva, O. V. (2025). KLEBSIELLA PNEUMONIAE – THE LEADING CAUSE OF WOUND INFECTION. Infectious Diseases – Infektsiyni Khvoroby, (2), 41–46. https://doi.org/10.11603/1681-2727.2025.2.15299

Issue

Section

Original investigations