ЕТІОЛОГІЧНІ, ЕПІДЕМІОЛОГІЧНІ ТА КЛІНІЧНІ АСПЕКТИ ГАРЯЧКИ ЗАХІДНОГО НІЛУ
DOI:
https://doi.org/10.11603/1681-2727.2024.4.15008Ключові слова:
вірус Західного Нілу, молекулярна біологія, гарячка Західного Нілу, епідеміологічні особливості, клінічні прояви, діагностика, лікуванняАнотація
Вірус Західного Нілу (ВЗН) переважно інфікує комарів, птахів, коней і людей. Цей збудник може спричиняти безсимптомне інфікування або захворювання з різноманітними клінічними проявами – від легкої гарячки до смертельно небезпечних нейроінвазивних форм хвороби. Останнім часом в Європейському Союзі та сусідніх країнах зросла частота і тяжкість захворювань, зумовлених ВЗН, особливо в середземноморському регіоні. Ймовірно ця тенденція пов’язана з підвищенням як середньої температури повітря, так і кількості опадів, що є сприятливими для поширення ВЗН. Завдяки помітному та зростаючому географічному розповсюдженню переносника та високому ендемічному потенціалу ВЗН, він викликає дедалі більше побоювань для громадської охорони здоров’я.
Клінічний спектр симптоматичної гарячки Західного Нілу (ГЗН) у людей широкий. У близько 80 % людей інфекція перебігає безсимптомно, у 20 % виявляють неспецифічне гарячкове захворювання, ступінь тяжкості якого може варіювати від легкого до тяжкого, тоді як у невеликої групи пацієнтів (<1 %) розвивається потенційно летальне нейроінвазивне захворювання. Одужання від ГЗН може бути повільним, а рівень смертності досягає 10 %, хоча й залежить від віку та імунного стану пацієнтів.
Особливо непокоїть той факт, що наразі немає вакцини або специфічних противірусних засобів для лікування таких хворих.
Посилання
Habarugira, G., Suen, W.W., Hobson-Peters, J., Hall, R.A., & Bielefeldt-Ohmann, H. (2020). West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens, 9(7), 589.
Sejvar, J.J. (2003). West Nile virus: an historical overview. Ochsner Journal, 5(3), 6-10.
Goldblum, N., Sterk, V.V., & Paderski, B. (1954). West Nile fever: The clinical features of the disease and the isolation of West Nile virus from the blood of nine human cases. American Journal of Epidemiology, 59(1), 89-103.
Heidecke, J., Lavarello Schettini, A., & Rocklöv, J. (2023). West Nile virus eco-epidemiology and climate change. PLOS Climate, 2(5), e0000129.
Huston, N.C., Tsao, L.H., Brackney, D.E., & Pyle, A.M. (2024). The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proceedings of the National Academy of Sciences, 121(29), e2312080121.
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1).
Terrell, J.R., Le, T.T., Paul, A., Brinton, M.A., Wilson, W.D., Poon, G.M., ... & Siemer, J.L. (2024). Structure of an RNA G-quadruplex from the West Nile virus genome. Nature Communications, 15(1), 5428.
Ramos-Lorente, S.E., Berzal-Herranz, B., Romero-López, C., & Berzal-Herranz, A. (2024). Recruitment of the 40S ribosomal subunit by the West Nile virus 3′ UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Research, 343, 199340.
Sarkar, S., & Armitage, B.A. (2021). Targeting a potential G-quadruplex forming sequence found in the West Nile virus genome by complementary gamma-peptide nucleic acid oligomers. ACS Infectious Diseases, 7(6), 1445-1456.
Ahlers, L.R., & Goodman, A.G. (2018). The immune responses of the animal hosts of West Nile virus: a comparison of insects, birds, and mammals. Frontiers in cellular and infection microbiology, 8, 96.
Huston, N.C., Tsao, L.H., Brackney, D.E., & Pyle, A.M. (2024). The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proceedings of the National Academy of Sciences, 121(29), e2312080121.
Habarugira, G., Suen, W.W., Hobson-Peters, J., Hall, R.A., & Bielefeldt-Ohmann, H. (2020). West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens, 9(7), 589.
Wang, H.R., Liu, T., Gao, X., Wang, H.B., & Xiao, J.H. (2024). Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review. Infectious Diseases of Poverty, 13(1), 38.
Heidecke, J., Lavarello Schettini, A., & Rocklöv, J. (2023). West Nile virus eco-epidemiology and climate change. PLOS Climate, 2(5), e0000129.
Ayers, V.B., Huang, Y.J.S., Lyons, A.C., Park, S.L., Higgs, S., Dunlop, J.I., ... & Vanlandingham, D.L. (2018). Culex tarsalis is a competent vector species for Cache Valley virus. Parasites & vectors, 11, 1-6.
Braack, L., Gouveia de Almeida, A.P., Cornel, A.J., Swanepoel, R., & De Jager, C. (2018). Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites & vectors, 11, 1-26.
Sule, W.F., Oluwayelu, D.O., Hernández-Triana, L.M., Fooks, A.R., Venter, M., & Johnson, N. (2018). Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasites & vectors, 11, 1-10.
Mancini, G., Montarsi, F., Calzolari, M., Capelli, G., Dottori, M., Ravagnan, S., ... & Savini, G. (2017). Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet. Ital, 53(2), 97-110.
Koch, R.T., Erazo, D., Folly, A.J., Johnson, N., Dellicour, S., Grubaugh, N.D., & Vogels, C.B. (2023). Genomic epidemiology of West Nile virus in Europe. One Health, 100664.
Vidaña, B., Busquets, N., Napp, S., Pérez-Ramírez, E., Jiménez-Clavero, M.Á., & Johnson, N. (2020). The role of birds of prey in West Nile virus epidemiology. Vaccines, 8(3), 550.
Eder, M., Cortes, F., Teixeira de Siqueira Filha, N., Araújo de França, G.V., Degroote, S., Braga, C., ... & Turchi Martelli, C.M. (2018). Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Infectious diseases of poverty, 7, 1-24.
Mundhra, S. (2024). West Nile Virus: A Comprehensive Overview of Epidemiology and Pathology. Emerging Human Viral Diseases, Volume II: Encephalitic, Gastroenteric, and Immunodeficiency Viral Infections, 193-219.
Schneider, J., Bachmann, F., Choi, M., Kurvits, L., Schmidt, M.L., Bergfeld, L., ... & Corman, V.M. (2022). Autochthonous West Nile virus infection in Germany: Increasing numbers and a rare encephalitis case in a kidney transplant recipient. Transboundary and emerging diseases, 69(2), 221-226.
Bassal, R., Shohat, T., Kaufman, Z., Mannasse, B., Shinar, E., Amichay, D., ... & Lustig, Y. (2017). The seroprevalence of West Nile Virus in Israel: A nationwide cross sectional study. PLoS One, 12(6), e0179774.
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1).
de Freitas Costa, E., Streng, K., Avelino de Souza Santos, M., & Counotte, M.J. (2024). The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLOS Neglected Tropical Diseases, 18(5), e0012162.
Barzon, L., Montarsi, F., Quaranta, E., Monne, I., Pacenti, M., Michelutti, A., ... & Capelli, G. (2022). Early start of seasonal transmission and co-circulation of West Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022. Eurosurveillance, 27(29), 2200548.
A virus for which there is no cure is spreading across Europe and the United States. It is carried by mosquitoes (01.10.2024). newsyou.info. Retrieved from https://newsyou.info/2024/10/yevropoyu-i-ssha-shiritsya-virus-vid-yakogo-nemaye-likiv-jogo-perenosyat-komari [in Ukrainian]
World Health Organization (WHO). West Nile virus. Geneva, Switzerland: WHO; 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/westnilevirus. Accessed: February 28, 2019.
Chianese, A., Stelitano, D., Astorri, R., Serretiello, E., Della Rocca, M.T., Melardo, C., ... & Franci, G. (2019). West Nile virus: an overview of current information. Translational Medicine Reports, 3(1).
Ferraccioli, F., Riccetti, N., Fasano, A., Mourelatos, S., Kioutsioukis, I., & Stilianakis, N.I. (2023). Effects of climatic and environmental factors on mosquito population inferred from West Nile virus surveillance in Greece. Scientific Reports, 13(1), 18803.
Marchino, M., Paternoster, G., Favretto, A.R., Balduzzi, G., Berezowski, J., & Tomassone, L. (2021). Process evaluation of integrated West Nile virus surveillance in northern Italy: an example of a One Health approach in public health policy. Evaluation and Program Planning, 89, 101991.
de Freitas Costa, E., Streng, K., Avelino de Souza Santos, M., & Counotte, M.J. (2024). The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLOS Neglected Tropical Diseases, 18(5), e0012162.
Are mosquitoes to blame? An interview with the deputy head of the Ministry of Health about three infectious diseases that can concern Ukrainians (6/09/2024). life.pravda.com.ua. Retrieved from https://life.pravda.com.ua/health/tri-infekciyni-hvorobi-pro-yaki-varto-pam-yatati-ukrajincyam-303566/ [in Ukrainian].
19 thousand suspicious cases of MSEK. Sanitary doctor Kuzin - about corruption, mosquitoes and the next pandemic (13/10/2024). www.bbc.com. Retrieved from https://www.bbc.com/ukrainian/articles/cz9p25x4jp1o [in Ukrainian].
Srihi, H., Chatti, N., Ben Mhadheb, M., Gharbi, J., & Abid, N. (2021). Phylodynamic and phylogeographic analysis of the complete genome of the West Nile virus lineage 2 (WNV-2) in the Mediterranean basin. BMC Ecology and Evolution, 21, 1-13.
Balakrishnan, A., Butte, D.K., & Jadhav, S.M. (2013). Complete genome sequence of West Nile virus isolated from Alappuzha district, Kerala, India. Genome Announcements, 1(3), 10-1128.
Tajima, S., Ebihara, H., & Lim, C. K. (2024). Amino Acids at Positions 156 and 332 in the E Protein of the West Nile Virus Subtype Kunjin Virus Classical Strain OR393 Are Involved in Plaque Size, Growth, and Pathogenicity in Mice. Viruses, 16(8), 1237.
Frost, M.J., Zhang, J., Edmonds, J.H., Prow, N.A., Gu, X., Davis, R., ... & Kirkland, P.D. (2012). Characterization of virulent West Nile virus kunjin strain, Australia, 2011. Emerging infectious diseases, 18(5), 792.
Gray, T.J., & Webb, C.E. (2014). A review of the epidemiological and clinical aspects of West Nile virus. International journal of general medicine, 193-203.
Bakonyi, T., Ivanics, É., Erdélyi, K., Ursu, K., Ferenczi, E., Weissenböck, H., & Nowotny, N. (2006). Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerging infectious diseases, 12(4), 618.
Baturin, A.A., Tkachenko, G.A., Ledeneva, M.L., Lemasova, L.V., Bondareva, O.S., Kaysarov, I.D., ... & Teteryatnikova, N.N. (2021). Molecular genetic analysis of West Nile virus variants circulating in European Russia between 2010 and 2019. Journal of microbiology, epidemiology and immunobiology, 98(3), 308-318.
Balatsos, G., Beleri, S., Tegos, N., Bisia, M., Karras, V., Zavitsanou, E., ... & Patsoula, E. (2024). Overwintering West Nile virus in active Culex pipiens mosquito populations in Greece. Parasites & Vectors, 17(1), 286.
Ramos-Lorente, S.E., Berzal-Herranz, B., Romero-López, C., & Berzal-Herranz, A. (2024). Recruitment of the 40S ribosomal subunit by the West Nile virus 3′ UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Research, 343, 199340.
Llorente, F. (2023). West Nile Virus Infection. Pathogens, 12(2), 151.
Zou, S., Foster, G.A., Dodd, R.Y., Petersen, L.R., & Stramer, S.L. (2010). West Nile fever characteristics among viremic persons identified through blood donor screening. The Journal of infectious diseases, 202(9), 1354-1361.
Riccetti, N., Ferraccioli, F., Fasano, A., & Stilianakis, N.I. (2023). Demographic characteristics associated with West Nile virus neuroinvasive disease–A retrospective study on the wider European area 2006–2021. Plos one, 18(9), e0292187.
Ronca, S.E., Ruff, J.C., & Murray, K.O. (2021). A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease?. PLoS neglected tropical diseases, 15(5), e0009190.
Sah, R., Borde, K., Mohanty, A., Chandran, D., Hussein, N.R., Lorenzo, J.M., & Dhama, K. (2022). Recent outbreaks of West Nile Virus (WNV) in the United States of America and European countries; current scenario and counteracting prospects–correspondence. International Journal of Surgery, 106, 106946.
Téllez-Zenteno, J.F., Hunter, G., Hernández-Ronquillo, L., & Haghir, E. (2013). Neuroinvasive West Nile virus disease in Canada. The Saskatchewan experience. Canadian journal of neurological sciences, 40(4), 580-584.
Watts, D.M., Rodriguez, C.M., Palermo, P.M., Suarez, V., Wong, S.J., Orbegozo, J., ... & Handel, G.A. (2020). Serosurvey for dengue virus infection among pregnant women in the West Nile virus enzootic community of El Paso Texas. PloS One, 15(11), e0242889.
Fulton, C.D., Beasley, D.W., Bente, D.A., & Dineley, K.T. (2020). Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain, Behavior, & Immunity-Health, 7, 100105.
Kotsev, S., Christova, I., & Pishmisheva-Peleva, M. (2020). West Nile fever–clinical and epidemiological characteristics. Review of the literature and contribution with three clinical cases. Folia Medica, 62(4), 843-850.
Girl, P., Euringer, K., Coroian, M., Mihalca, A.D., Borde, J.P., & Dobler, G. (2024). Comparison of Five Serological Methods for the Detection of West Nile Virus Antibodies. Viruses, 16(5), 788.
Gómez-Vicente, E., Garcia, R., Calatrava, E., Olivares Duran, M.J., Gutiérrez-Bautista, J.F., Rodriguez-Granger, J., ... & Sampedro-Martinez, A. (2022). Comparative evaluation of chemiluminescent immunoassay and enzyme-linked immunosorbent assays for the diagnosis of West Nile virus infections. APMIS, 130(4), 215-220.
Rusenova, N., Rusenov, A., & Monaco, F. (2024). A Retrospective Study on the Seroprevalence of West Nile Virus Among Donkeys and Mules in Bulgaria. Vector-Borne and Zoonotic Diseases, 24(5), 274-277.
Cvjetković, I.H., Radovanov, J., Kovačević, G., Turkulov, V., & Patić, A. (2023). Diagnostic value of urine qRT-PCR for the diagnosis of West Nile virus neuroinvasive disease. Diagnostic Microbiology and Infectious Disease, 107(1), 115920.
Pappa, S., Chaintoutis, S.C., Dovas, C.I., & Papa, A. (2021). PCR-based next-generation West Nile virus sequencing protocols. Molecular and Cellular Probes, 60, 101774.
Tang, H., Liu, Y., Ren, R., Liu, Y., He, Y., Qi, Z., ... & Zhao, P. (2022). Identification of clinical candidates against West Nile virus by activity screening in vitro and effect evaluation in vivo. Journal of Medical Virology, 94(10), 4918-4925.
Sinigaglia, A., Peta, E., Riccetti, S., & Barzon, L. (2020). New avenues for therapeutic discovery against West Nile virus. Expert Opinion on Drug Discovery, 15(3), 333-348.
Tang, W.D., Tang, H.L., Peng, H.R., Ren, R.W., Zhao, P., & Zhao, L.J. (2023). Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Frontiers in Microbiology, 14, 1182798.
Castaneda, L., & Poquiz, P. (2024). West Nile Virus Encephalitis Disguised as a Cerebrovascular Accident. Proceedings of UCLA Health, 28.
Tunkel, A.R., Glaser, C.A., Bloch, K.C., Sejvar, J.J., Marra, C.M., Roos, K.L., ... & Whitley, R.J. (2008). The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clinical infectious diseases, 303-327.
Lin, S.C., Zhao, F.R., Janova, H., Gervais, A., Rucknagel, S., Murray, K.O., ... & Diamond, M.S. (2023). Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nature communications, 14(1), 5973.
Rodríguez-Pulido, M., Martín-Acebes, M.A., Escribano-Romero, E., Blázquez, A.B., Sobrino, F., Borrego, B., ... & Saiz, J.C. (2012). Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One, 7(11), e49494.
McIver, K. (2021). Recovery from a severe West Nile Virus infection in a one-year-old stallion following interferon alpha-2b treatment: an equine model for human therapy.
Wessel, A.W., Doyle, M.P., Engdahl, T.B., Rodriguez, J., Crowe, J.E., & Diamond, M.S. (2021). Human monoclonal antibodies against NS1 protein protect against lethal West Nile virus infection. Mbio, 12(5), 10-1128.
Rizzo, S., Imperato, P., Mora-Cárdenas, E., Konstantinidou, S., Marcello, A., & Sblattero, D. (2020). Selection and characterization of highly specific recombinant antibodies against West Nile Virus E protein. Journal of biotechnology, 311, 35-43.
Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Čurlík, J., ... & Kulkarni, A. (2022). Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Frontiers in Microbiology, 13, 801466.
Petersen, L.R. (2008). Clinical manifestations, diagnosis, and treatment of West Nile virus infection. UpToDate. UpToDate, Waltham.
Weiß, R., Issmail, L., Rockstroh, A., Grunwald, T., Fertey, J., & Ulbert, S. (2023). Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Frontiers in Cellular and Infection Microbiology, 13, 1279147.
AlQahtani, M., Kumar, N., Aljawder, D., Abdulrahman, A., Mohamed, M.W., Alnashaba, F., ... & Atkin, S.L. (2022). Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Scientific Reports, 12(1), 4925.
Tang, H., Liu, Y., Ren, R., Liu, Y., He, Y., Qi, Z., ... & Zhao, P. (2022). Identification of clinical candidates against West Nile virus by activity screening in vitro and effect evaluation in vivo. Journal of Medical Virology, 94(10), 4918-4925.
Fonzo, M., Bertoncello, C., Tudor, L., Miccolis, L., Serpentino, M., Petta, D., ... & Trevisan, A. (2024). Do we protect ourselves against West Nile virus? A systematic review on knowledge, attitudes, and practices and their determinants. Journal of Infection and Public Health.
Moua, Y., Kotchi, S.O., Ludwig, A., & Brazeau, S. (2021). Mapping the habitat suitability of West Nile virus vectors in Southern Quebec and Eastern Ontario, Canada, with species distribution modeling and satellite earth observation data. Remote Sensing, 13(9), 1637.
García-Carrasco, J.M., Muñoz, A.R., Olivero, J., Segura, M., & Real, R. (2021). Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS neglected tropical diseases, 15(1), e0009022.
Wimberly, M.C., Davis, J.K., Hildreth, M.B., & Clayton, J.L. (2022). Integrated forecasts based on public health surveillance and meteorological data predict West Nile virus in a high-risk region of North America. Environmental Health Perspectives, 130(8), 087006.
García-Carrasco, J.M., Muñoz, A.R., Olivero, J., Segura, M., & Real, R. (2021). Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS neglected tropical diseases, 15(1), e0009022.
Holcomb, K.M., Staples, J.E., Nett, R.J., Beard, C.B., Petersen, L.R., Benjamin, S.G., ... & Johansson, M.A. (2023). Multi-model prediction of West Nile virus neuroinvasive disease with machine learning for identification of important regional climatic drivers. GeoHealth, 7(11), e2023GH000906.
Gould, C.V., Staples, J.E., Huang, C.Y.H., Brault, A.C., & Nett, R.J. (2023). Combating west nile virus disease–Time to revisit vaccination. New England Journal of Medicine, 388(18), 1633-1636.
A virus for which there is no cure is spreading across Europe and the United States. It is carried by mosquitoes (01.10.2024). newsyou.info. Retrieved from https://newsyou.info/2024/10/yevropoyu-i-ssha-shiritsya-virus-vid-yakogo-nemaye-likiv-jogo-perenosyat-komari [in Ukrainian].
Curren, E.J., Shankar, M.B., Fischer, M., Meltzer, M.I., Erin Staples, J., & Gould, C.V. (2021). Cost-effectiveness and impact of a targeted age-and incidence-based West Nile virus vaccine strategy. Clinical Infectious Diseases, 73(9), 1565-1570.
Hendy, D.A., Johnson-Weaver, B.T., Batty, C.J., Bachelder, E.M., Abraham, S.N., Staats, H.F., & Ainslie, K.M. (2023). Delivery of small molecule mast cell activators for West Nile Virus vaccination using acetalated dextran microparticles. International journal of pharmaceutics, 634, 122658.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 В. С. Копча
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи, яка через [ВКАЖІТЬ ПЕРІОД ЧАСУ] з дати публікації автоматично стає доступною на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).