Токсичність МАРК у карциномах щитоподібної залози. Механізми пригнічення сигнального каскаду (огляд літератури та власних даних)

Автор(и)

  • B. B. Guda ДУ “Інститут ендокринології та обміну речовин імені В. П. Комісаренка НАМН України”
  • V. V. Pushkarev ДУ “Інститут ендокринології та обміну речовин імені В. П. Комісаренка НАМН України”
  • O. I. Kovzun ДУ “Інститут ендокринології та обміну речовин імені В. П. Комісаренка НАМН України”
  • V. P. Pushkarev ДУ “Інститут ендокринології та обміну речовин імені В. П. Комісаренка НАМН України”
  • M. D. Tronko ДУ “Інститут ендокринології та обміну речовин імені В. П. Комісаренка НАМН України”

DOI:

https://doi.org/10.11603/2414-4533.2019.3.10551

Ключові слова:

онкогени, злоякісні пухлини, щитоподібна залоза, MAPK, морталін

Анотація

Мета роботи: дослідження в пухлинах щитоподібної залози (ЩЗ) активності та експресії головної ефекторної протеїнкінази каскаду – ERK1/2.

Отримано переконливі докази того, що сигнальний каскад Ras/Raf/MEK/ERK (МАРК) сприяє проліферації і злоякісній трансформації клітин шляхом стимуляції клітинного росту і ділення, а також пригнічення апоптозу. Мітогенний МАРК-каскад пов’язує сигнали факторів росту на рецепторах клітинної поверхні з транскрипційними факторами АР-1, NF-κB, Ets, що приводить до індукції с-Fos, цикліну D1 і с-Мус. Ці фактори регулюють експресію генів, що контролюють виживання, ангіогенез, ріст, проліферацію і мобільність клітин. Однак гіперактивність цього каскаду в пухлинних тканинах може привести до сенесценції, затримки росту, апоптозу або посилення автофагії. Цей феномен назвали “токсичністю онкогенів”.

Посилання

Wortzel, I., & Seger, R. (2011). The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2 (3), 195-209.

Beeram, M., Patnaik, A., & Rowinsky, E.K. (2005). Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol., 23, 6771-6790.

Mendoza, M.C., Er, E.E., & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci., 36 (6), 320-328. DOI:10.1016/j.tibs.2011.03.006.

Lake, D., Corrêa, S.A., & Müller, J. (2016). Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol. Life Sci., 73 (23), 4397-4413.

Berridge, M.J. (2014). Cell Signalling Pathways. Cell Signalling Biology, 138 doi:10.1042/csb0001002.

McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W., Chang, F., …, Franklin, R.A. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem. Biophys. Acta., 1773 (8), 1263-1284.

Xing, M. (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer, 13, 184-199.

Xie, J., Fan, Y., & Zhang, X. (2016). Molecular mechanisms in differentiated thyroid cancer. Front Biosci. (Landmark ed.), 21, 119-129.

Yakushina, V.D., Lerner, L.V., & Lavrov, A.V. (2018). Gene fusions in thyroid cancer. Thyroid, 28 (2), 158-167.

Starenki, D., Sosonkina, N., Hong, S.K., Lloyd, R.V., & Park, J.I. (2019). Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. Int. J. Mol. Sci., 26, 20 (9). pii: E2069.

Pushkarev, V.M., Starenki, D.V., Saenko, V.A., Namba, H., Kurebayashi, J., Tronko, M.D., & Yamashita, S. (2004). Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology, 145 (7), 3143-3152.

Popadiuk, I.D., Pushkarov, V.M., Kostiuchenko, N.M., & Tronko, M.D. (2008). Uchast MARK u oposeredkuvanni dii protypukhlynnoho preparatu taksolu na klityny ana-plastychnoho raku shchytopodibnoi zalozy [MAPK involvement in mediating the action of the anticancer drug taxol on anaplastic thyroid cancer cells]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 2, 174-177 [in Ukrainian].

Milosevic, Z., Pesic, M., Stankovic, T., Dinic, J., Milovano­vic, Z., Stojsic, J., …, Bankovic, J. (2014). Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res., 164 (5), 411-423.

Sáez, J.M. (2013). Treatment directed to signalling molecules in patients with advanced differentiated thyroid cancer. Anticancer Agents Med. Chem., 13 (3), 483-495.

Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kova­lenko, A. Ye., Taraschenko, Y.M., Kovzun, O.I. & Tronko, M.D. (2015). The expression and activation of extracellular signal-regulated kinase-1/2 and proliferating cell nuclear antigen content in normal tissue and human thyroid tumors. SM J. Endocrinol. Metab., 1 (1), 1002.

Huda, B.B., Pushkarov, V.V., Zhuravel, O.V., Kovalen­ko, A. Ye., Pushkarov, V.M., Zurnadzhy, L.Yu., …, & Tronko M.D. (2015). Ekspresiia yadernoho antyhenu proliferuiuchykh klityn (PCNA) v normalnykh tkanynakh ta dobroiakisnykh, vysoko­dyferentsiiovanykh zloiakisnykh (z naiavnistiu metasta­­tych­noho urazhennia ta bez metastaziv) pukhlynakh shchy­topodibnoi zalozy liudyny [Expression of proliferating cell nuclear antigen (PCNA) in normal tissues and benign, highly differentiated malignancies (with metastatic lesions and without metastases) in human thyroid tumors]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 10, 93-97 [in Ukrainian].

Huda, B.B., Pushkarov, V.M., Kovalenko, A.Ye., Pushka­rov, V.V., Tarashchenko, Yu.M., Kovzun, O.I., & Tronko, M.D. (2017). Aktyvnist proteinkinazy V ta pozaklitynnoi syhnal-rehulovanoi kinazy-1/2 v pukhlynakh shchytopodibnoi zalozy, normalizovana shchodo ekspresii proteinkinaz v tkanyni [Protein kinase B activity and extracellular signal-regulated kinase-1/2 in thyroid tumors normalized to tissue kinase expression]. Problemy endokrynnoi patolohii – Problems of Endocrine Pathology, 2, 38-43; 38-43 [in Ukrainian].

Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kova­lenko, A.Ye., Taraschenko, Y.M., Zhuravel, O.V., …, & Tronko, M.D. (2016). Role of mitogen-activated protein kinase (MAPK) in processes of proliferation in human thyroid tumors. Endocrinology, 21, 1, 5-9.

Pushkarev, V.M., Guda, B.B., Pushkarev, V.V., & Tron­ko, M.D. (2018). Toxicity of oncogenes in thyroid сarcinomas and other tumor types. Cytology and Genetics, 52, 1, 54-61.

Lee, J.U., Huang, S., Lee, M.H., Lee, S.E., Ryu, M.J., Kim, S.J., …, & Y.S. Jo. (2012). Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer. European Journal of Endocrinology, 167, 93-101.

McCubrey, J.A., Milella, M., Tafuri, A., Martelli, A.M., Lunghi, P., Bonati, A., …, & Steelman, L.S. (2008). Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors. Curr. Opin. Investig. Drugs, 9 (6), 614-630.

Bric, A., Miething, C., Bialucha, C.U., Scuoppo, C., Zender, L., Krasnitz, A., ..., & Lowe, S.W. (2009). Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell., 16, 324-335.

Deschenes-Simard, X., Gaumont-Leclerc, M.F., Bourdeau, V., Lessard, F., Moiseeva, O., Forest, V., ..., & Ferbeyre, G. (2013). Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev., 27, 900-915.

Deschenes-Simard, X., Kottakis, F., Meloche, S., & Fer­beyre, G. (2014). ERKs in cancer: friends or foes? Cancer Res., 74 (2), 412-419.

Park, J.I., Strock, C.J., Ball, D.W., & Nelkin, B.D. (2003). The Ras/Raf/MEK/Extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol. Cell Biol., 23 (2), 543-554.

Park, J.I. (2014a). Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Front Biol (Beijing)., 9 (2), 95-103.

Arthan, D., Hong, S.K., & Park, J.I. (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett., 297 (1), 31-41.

Hong, S.K., Yoon, S., Moelling, C., Arthan, D., & Park, J.I. (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J. Biol. Chem., 284 (48), 33006-330018.

Kim, E.J., Park, J.I., & Nelkin, B.D. (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J. Biol. Chem., 280, 4913-4920.

Falco, A., Festa, M., Basile, A., Rosati, A., Pascale, M., Florenzano, F., ..., Turco, M.C. (2012). BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene, 20, 31 (50), 5153-5161.

Ohtsuka, S., Ogawa, S., Wakamatsu, E., Abe, R. (2016). Cell cycle arrest caused by MEK/ERK signaling is a mechanism for suppressing growth of antigen-hyperstimulated effector T cells. Int. Immunol., 28 (11), 547-557.

Zakrzewska, M., Haugsten, E.M., Nadratowska-Wesolow­ska, B., Oppelt, A., Hausott, B., Jin, Y., ..., & Wiedlocha, A. (2013). ERK-mediated phosphorylation of fibroblast growth factor receptor 1 on Ser777 inhibits signaling. Sci. Signal., 6 (262), ra11.

Leontieva, O.V., & Blagosklonny, M.V. (2014). Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget., 5 (24), 12715-12727.

Taylor, J.R., Lehmann, B.D., Chappell, W.H., Abrams, S.L., Steelman, L.S., & McCubrey, J.A. (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget., 2 (8), 610-626.

Adams, P.D. (2009). Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell., 36, 2-14.

Leidal, A.M., Cyr, D.P., Hill, R.J., Lee, P.W., & McCormick, C. (2012). Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe., 11 (2), 167-180.

Bansal, R., & Nikiforov, M.A. (2010). Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle., 9, 2782-2788.

Young, A.R., Narita, M., Ferreira, M., Kirschner, K., Sa­daie, M., Darot, J.F., ..., Narita, M. (2009). Autophagy mediates the mitotic senescence transition. Genes Dev., 23, 798-803.

Shin, J., Yang, J., Lee, J.C., & Baek, K.H. (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal., 25 (12), 2540-2547.

Cagnol, S., & Chambard, J.C. (2010). ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J., 277 (1), 2-21.

Li, G., He, Y., Yao, J., Huang, C., Song, X., Deng, Y., ..., & Liu, H. (2016). Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol. Rep., 36 (6), 3504-3512.

Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., ..., Mograbi, B. (2006). Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res., 66, 6861-6870.

Zhao, Y., Fan, D., Zheng, Z.P., Li, E.T., Chen, F., Cheng, K.W., & Wang, M. (2017). 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Mol. Nutr. Food Res., 61 (2), doi: 10.1002/mnfr.201600437.

Chen, S.Y., Chiu, L.Y., Ma, M.C., Wang, J.S., Chien, C.L., & Lin, W.W. (2011). zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy., 7, 217-228.

Blasco, R.B., Francoz, S., Santamaria, D., Cañamero, M., Dubus, P., Charron, J., …, Barbacid, M. (2011). c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non–small cell lung carcinoma. Cancer Cell., 19, 652-663.

Mebratu, Y., & Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle., 8 (8), 1168-1175.

Wu, P.K., Hong, S.K., Veeranki, S., Karkhanis, M., Starenki, D., Plaza, J.A., & Park J. I. (2013). A Mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/Extracellular signal-regulated kinase. Mol. Cell Biol., 33 (20), 4051-4067.

Park, S.J., Shin, J.H., Jeong, J.I., Song, J.H., Jo, Y.K., Kim, E.S., …, & Cho, D.H. (2014b). Down-regulation of mortalin exacerbates αβ-mediated mitochondrial fragmentation and dysfunction. J. Biol. Chem. 289, 2195-2204.

Ryu, J., Kaul, Z., Yoon, A.R., Liu, Y., Yaguchi, T., Na, Y., …, Wadhwa, R. (2014). Identification and functional characterization of nuclear mortalin in human carcinogenesis. J. Biol. Chem., 289 (36), 24832-54844. doi: 10.1074/jbc.M114.565929.

Starenki, D., Hong, S.K., Lloyd, R.V., & Park, J.I. (2015a). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34 (35), 4624-4634.

Starenki, D., & Park, J. I. (2015b). Selective mitochondrial uptake of MKT-077 can suppress medullary thyroid carcinoma cell survival in vitro and in vivo. Endocrinol. Metab., 30, 593-603.

Ando, K., Oki, E., Zhao, Y., Ikawa-Yoshida, A., Kitao, H., Saeki, H., & Maehara, Y. (2014). Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer, 17, 255-262.

Chen, J., Liu, W.B., Jia, W.D., Xu, G.L., Ma, J.L., Huang, M., …, & Li, J.S. (2014). Overexpression of Mortalin in hepatocellular carcinoma and its relationship with angiogenesis and epithelial to mesenchymal transition. Int. J. Oncol., 44, 247-255.

Rozenberg, P., Kocsis, J., Saar, M., Prohászka, Z., Füst, G., & Fishelson, Z. (2013). Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. Int. J. Cancer, 133, 514-518.

Iosefson, O., & Azem, A. (2010). Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins—identification of additional interacting regions. FEBS Lett., 584, 1080-1084.

Lu, W.J., Lee, N.P., Kaul, S.C., Lan, F., Poon, R.T., Wadhwa, R., & Luk, J.M. (2011). Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ, 18, 1046–1056.

Gestl, E.E., & Anne Böttger, S. (2012). Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochem. Biophys. Res. Commun. 423, 411–416.

Wu, P.K., Hong, S.K., & Park, J.I. (2017). Steady-state levels of phosphorylated mitogen-activated protein kinase kinase 1/2 determined by mortalin/HSPA9 and protein phosphatase 1 α in KRAS and BRAF tumor cells. Mol. Cell. Biol., 37 (18), pii: e00061-17.

Caria, P., Dettori, T., Frau, D.V., Lichtenzstejn, D., Pani, F., Vanni, R., & Mai, S. (2019). Characterizing the three-dimensional organization of telomeres in papillary thyroid carcinoma cells. J. Cell. Physiol., 234, 5175-5185.

Moon, S., Song, Y.S., Kim, Y.A., Lim, J.A., Cho, S.W., Moon, J.H., …, & Park, Y.J. (2017). Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: A meta-analysis. Thyroid, 27, 651-660.

Dougherty, M.K., Mu¨ller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., …, Morrison, D.K. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell, 17 (2), 215-224.

Eblen, S.T., Slack-Davis, J.K., Tarcsafalvi, A., Parsons, J.T., Weber, M.J., & Catling, A.D. (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell Biol., 24 (6), 2308-2317.

Brown, M.D., & Sacks, D.B. (2009). Protein scaffolds in MAP kinase signalling. Cell Signal., 21 (4), 462-469

Caunt, C.J., & Keyse, S.M. (2013). Dual-specificity MAP kinase phosphatases (MKPs). FEBS J., 280 (2), 489-504.

Huang, C.Y., & Tan, T.H. (2012). DUSPs, to MAP kinases and beyond. Cell Biosci., 2 (1), 24.

##submission.downloads##

Опубліковано

2019-11-05

Як цитувати

Guda, B. B., Pushkarev, V. V., Kovzun, O. I., Pushkarev, V. P., & Tronko, M. D. (2019). Токсичність МАРК у карциномах щитоподібної залози. Механізми пригнічення сигнального каскаду (огляд літератури та власних даних). Шпитальна хірургія. Журнал імені Л. Я. Ковальчука, (3), 84–96. https://doi.org/10.11603/2414-4533.2019.3.10551

Номер

Розділ

ОГЛЯДИ