Toxicity of mapk in thyroid carcinoma. Mechanisms of suppression of signal Cascade (review of literature and own data)

Authors

  • B. B. Guda V. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine
  • V. V. Pushkarev V. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine
  • O. I. Kovzun V. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine
  • V. P. Pushkarev V. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine
  • M. D. Tronko V. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine

DOI:

https://doi.org/10.11603/2414-4533.2019.3.10551

Keywords:

oncogenes, malignant tumors, thyroid gland, MAPK, mortalin

Abstract

The aim of the work: to study the activity and expression of the main effector protein kinase cascade in tumors of thyroid gland.

There is a strong evidence that the Ras/Raf/MEK/ERK (МАРК) signaling cascade promotes cell proliferation and malignancy by stimulating cell growth and division, as well as inhibiting apoptosis. The mitogenic MAPK cascade associates growth factor signals at cell surface receptors with the transcription factors AP-1, NF-κB, Ets, leading to the induction of c-Fos, cyclin D1 and c-Myc. These factors regulate the expression of genes that control survival, angiogenesis, growth, proliferation, and cell motility. However, the hyperactivity of this cascade in tumor tissues can lead to sensescence, growth retardation, apoptosis or increased autophagy. This phenomenon was called "oncogenic toxicity".

References

Wortzel, I., & Seger, R. (2011). The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2 (3), 195-209. DOI: https://doi.org/10.1177/1947601911407328

Beeram, M., Patnaik, A., & Rowinsky, E.K. (2005). Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol., 23, 6771-6790. DOI: https://doi.org/10.1200/JCO.2005.08.036

Mendoza, M.C., Er, E.E., & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci., 36 (6), 320-328. DOI:10.1016/j.tibs.2011.03.006. DOI: https://doi.org/10.1016/j.tibs.2011.03.006

Lake, D., Corrêa, S.A., & Müller, J. (2016). Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol. Life Sci., 73 (23), 4397-4413. DOI: https://doi.org/10.1007/s00018-016-2297-8

Berridge, M.J. (2014). Cell Signalling Pathways. Cell Signalling Biology, 138 doi:10.1042/csb0001002. DOI: https://doi.org/10.1042/csb0001002

McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W., Chang, F., …, Franklin, R.A. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem. Biophys. Acta., 1773 (8), 1263-1284. DOI: https://doi.org/10.1016/j.bbamcr.2006.10.001

Xing, M. (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer, 13, 184-199. DOI: https://doi.org/10.1038/nrc3431

Xie, J., Fan, Y., & Zhang, X. (2016). Molecular mechanisms in differentiated thyroid cancer. Front Biosci. (Landmark ed.), 21, 119-129. DOI: https://doi.org/10.2741/4379

Yakushina, V.D., Lerner, L.V., & Lavrov, A.V. (2018). Gene fusions in thyroid cancer. Thyroid, 28 (2), 158-167. DOI: https://doi.org/10.1089/thy.2017.0318

Starenki, D., Sosonkina, N., Hong, S.K., Lloyd, R.V., & Park, J.I. (2019). Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. Int. J. Mol. Sci., 26, 20 (9). pii: E2069.

Pushkarev, V.M., Starenki, D.V., Saenko, V.A., Namba, H., Kurebayashi, J., Tronko, M.D., & Yamashita, S. (2004). Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology, 145 (7), 3143-3152. DOI: https://doi.org/10.1210/en.2004-0127

Popadiuk, I.D., Pushkarov, V.M., Kostiuchenko, N.M., & Tronko, M.D. (2008). Uchast MARK u oposeredkuvanni dii protypukhlynnoho preparatu taksolu na klityny ana-plastychnoho raku shchytopodibnoi zalozy [MAPK involvement in mediating the action of the anticancer drug taxol on anaplastic thyroid cancer cells]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 2, 174-177 [in Ukrainian].

Milosevic, Z., Pesic, M., Stankovic, T., Dinic, J., Milovano­vic, Z., Stojsic, J., …, Bankovic, J. (2014). Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res., 164 (5), 411-423. DOI: https://doi.org/10.1016/j.trsl.2014.06.005

Sáez, J.M. (2013). Treatment directed to signalling molecules in patients with advanced differentiated thyroid cancer. Anticancer Agents Med. Chem., 13 (3), 483-495.

Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kova­lenko, A. Ye., Taraschenko, Y.M., Kovzun, O.I. & Tronko, M.D. (2015). The expression and activation of extracellular signal-regulated kinase-1/2 and proliferating cell nuclear antigen content in normal tissue and human thyroid tumors. SM J. Endocrinol. Metab., 1 (1), 1002.

Huda, B.B., Pushkarov, V.V., Zhuravel, O.V., Kovalen­ko, A. Ye., Pushkarov, V.M., Zurnadzhy, L.Yu., …, & Tronko M.D. (2015). Ekspresiia yadernoho antyhenu proliferuiuchykh klityn (PCNA) v normalnykh tkanynakh ta dobroiakisnykh, vysoko­dyferentsiiovanykh zloiakisnykh (z naiavnistiu metasta­­tych­noho urazhennia ta bez metastaziv) pukhlynakh shchy­topodibnoi zalozy liudyny [Expression of proliferating cell nuclear antigen (PCNA) in normal tissues and benign, highly differentiated malignancies (with metastatic lesions and without metastases) in human thyroid tumors]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 10, 93-97 [in Ukrainian].

Huda, B.B., Pushkarov, V.M., Kovalenko, A.Ye., Pushka­rov, V.V., Tarashchenko, Yu.M., Kovzun, O.I., & Tronko, M.D. (2017). Aktyvnist proteinkinazy V ta pozaklitynnoi syhnal-rehulovanoi kinazy-1/2 v pukhlynakh shchytopodibnoi zalozy, normalizovana shchodo ekspresii proteinkinaz v tkanyni [Protein kinase B activity and extracellular signal-regulated kinase-1/2 in thyroid tumors normalized to tissue kinase expression]. Problemy endokrynnoi patolohii – Problems of Endocrine Pathology, 2, 38-43; 38-43 [in Ukrainian].

Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kova­lenko, A.Ye., Taraschenko, Y.M., Zhuravel, O.V., …, & Tronko, M.D. (2016). Role of mitogen-activated protein kinase (MAPK) in processes of proliferation in human thyroid tumors. Endocrinology, 21, 1, 5-9.

Pushkarev, V.M., Guda, B.B., Pushkarev, V.V., & Tron­ko, M.D. (2018). Toxicity of oncogenes in thyroid сarcinomas and other tumor types. Cytology and Genetics, 52, 1, 54-61. DOI: https://doi.org/10.3103/S0095452718010103

Lee, J.U., Huang, S., Lee, M.H., Lee, S.E., Ryu, M.J., Kim, S.J., …, & Y.S. Jo. (2012). Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer. European Journal of Endocrinology, 167, 93-101. DOI: https://doi.org/10.1530/EJE-12-0010

McCubrey, J.A., Milella, M., Tafuri, A., Martelli, A.M., Lunghi, P., Bonati, A., …, & Steelman, L.S. (2008). Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors. Curr. Opin. Investig. Drugs, 9 (6), 614-630.

Bric, A., Miething, C., Bialucha, C.U., Scuoppo, C., Zender, L., Krasnitz, A., ..., & Lowe, S.W. (2009). Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell., 16, 324-335. DOI: https://doi.org/10.1016/j.ccr.2009.08.015

Deschenes-Simard, X., Gaumont-Leclerc, M.F., Bourdeau, V., Lessard, F., Moiseeva, O., Forest, V., ..., & Ferbeyre, G. (2013). Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev., 27, 900-915. DOI: https://doi.org/10.1101/gad.203984.112

Deschenes-Simard, X., Kottakis, F., Meloche, S., & Fer­beyre, G. (2014). ERKs in cancer: friends or foes? Cancer Res., 74 (2), 412-419.

Park, J.I., Strock, C.J., Ball, D.W., & Nelkin, B.D. (2003). The Ras/Raf/MEK/Extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol. Cell Biol., 23 (2), 543-554. DOI: https://doi.org/10.1128/MCB.23.2.543-554.2003

Park, J.I. (2014a). Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Front Biol (Beijing)., 9 (2), 95-103. DOI: https://doi.org/10.1007/s11515-014-1299-x

Arthan, D., Hong, S.K., & Park, J.I. (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett., 297 (1), 31-41. DOI: https://doi.org/10.1016/j.canlet.2010.04.021

Hong, S.K., Yoon, S., Moelling, C., Arthan, D., & Park, J.I. (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J. Biol. Chem., 284 (48), 33006-330018. DOI: https://doi.org/10.1074/jbc.M109.012591

Kim, E.J., Park, J.I., & Nelkin, B.D. (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J. Biol. Chem., 280, 4913-4920. DOI: https://doi.org/10.1074/jbc.M410542200

Falco, A., Festa, M., Basile, A., Rosati, A., Pascale, M., Florenzano, F., ..., Turco, M.C. (2012). BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene, 20, 31 (50), 5153-5161. DOI: https://doi.org/10.1038/onc.2012.17

Ohtsuka, S., Ogawa, S., Wakamatsu, E., Abe, R. (2016). Cell cycle arrest caused by MEK/ERK signaling is a mechanism for suppressing growth of antigen-hyperstimulated effector T cells. Int. Immunol., 28 (11), 547-557. DOI: https://doi.org/10.1093/intimm/dxw037

Zakrzewska, M., Haugsten, E.M., Nadratowska-Wesolow­ska, B., Oppelt, A., Hausott, B., Jin, Y., ..., & Wiedlocha, A. (2013). ERK-mediated phosphorylation of fibroblast growth factor receptor 1 on Ser777 inhibits signaling. Sci. Signal., 6 (262), ra11.

Leontieva, O.V., & Blagosklonny, M.V. (2014). Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget., 5 (24), 12715-12727. DOI: https://doi.org/10.18632/oncotarget.3011

Taylor, J.R., Lehmann, B.D., Chappell, W.H., Abrams, S.L., Steelman, L.S., & McCubrey, J.A. (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget., 2 (8), 610-626. DOI: https://doi.org/10.18632/oncotarget.315

Adams, P.D. (2009). Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell., 36, 2-14. DOI: https://doi.org/10.1016/j.molcel.2009.09.021

Leidal, A.M., Cyr, D.P., Hill, R.J., Lee, P.W., & McCormick, C. (2012). Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe., 11 (2), 167-180. DOI: https://doi.org/10.1016/j.chom.2012.01.005

Bansal, R., & Nikiforov, M.A. (2010). Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle., 9, 2782-2788. DOI: https://doi.org/10.4161/cc.9.14.12251

Young, A.R., Narita, M., Ferreira, M., Kirschner, K., Sa­daie, M., Darot, J.F., ..., Narita, M. (2009). Autophagy mediates the mitotic senescence transition. Genes Dev., 23, 798-803. DOI: https://doi.org/10.1101/gad.519709

Shin, J., Yang, J., Lee, J.C., & Baek, K.H. (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal., 25 (12), 2540-2547. DOI: https://doi.org/10.1016/j.cellsig.2013.08.014

Cagnol, S., & Chambard, J.C. (2010). ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J., 277 (1), 2-21. DOI: https://doi.org/10.1111/j.1742-4658.2009.07366.x

Li, G., He, Y., Yao, J., Huang, C., Song, X., Deng, Y., ..., & Liu, H. (2016). Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol. Rep., 36 (6), 3504-3512. DOI: https://doi.org/10.3892/or.2016.5166

Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., ..., Mograbi, B. (2006). Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res., 66, 6861-6870. DOI: https://doi.org/10.1158/0008-5472.CAN-05-3557

Zhao, Y., Fan, D., Zheng, Z.P., Li, E.T., Chen, F., Cheng, K.W., & Wang, M. (2017). 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Mol. Nutr. Food Res., 61 (2), doi: 10.1002/mnfr.201600437. DOI: https://doi.org/10.1002/mnfr.201600437

Chen, S.Y., Chiu, L.Y., Ma, M.C., Wang, J.S., Chien, C.L., & Lin, W.W. (2011). zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy., 7, 217-228. DOI: https://doi.org/10.4161/auto.7.2.14212

Blasco, R.B., Francoz, S., Santamaria, D., Cañamero, M., Dubus, P., Charron, J., …, Barbacid, M. (2011). c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non–small cell lung carcinoma. Cancer Cell., 19, 652-663. DOI: https://doi.org/10.1016/j.ccr.2011.04.002

Mebratu, Y., & Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle., 8 (8), 1168-1175. DOI: https://doi.org/10.4161/cc.8.8.8147

Wu, P.K., Hong, S.K., Veeranki, S., Karkhanis, M., Starenki, D., Plaza, J.A., & Park J. I. (2013). A Mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/Extracellular signal-regulated kinase. Mol. Cell Biol., 33 (20), 4051-4067. DOI: https://doi.org/10.1128/MCB.00021-13

Park, S.J., Shin, J.H., Jeong, J.I., Song, J.H., Jo, Y.K., Kim, E.S., …, & Cho, D.H. (2014b). Down-regulation of mortalin exacerbates αβ-mediated mitochondrial fragmentation and dysfunction. J. Biol. Chem. 289, 2195-2204. DOI: https://doi.org/10.1074/jbc.M113.492587

Ryu, J., Kaul, Z., Yoon, A.R., Liu, Y., Yaguchi, T., Na, Y., …, Wadhwa, R. (2014). Identification and functional characterization of nuclear mortalin in human carcinogenesis. J. Biol. Chem., 289 (36), 24832-54844. doi: 10.1074/jbc.M114.565929. DOI: https://doi.org/10.1074/jbc.M114.565929

Starenki, D., Hong, S.K., Lloyd, R.V., & Park, J.I. (2015a). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34 (35), 4624-4634. DOI: https://doi.org/10.1038/onc.2014.392

Starenki, D., & Park, J. I. (2015b). Selective mitochondrial uptake of MKT-077 can suppress medullary thyroid carcinoma cell survival in vitro and in vivo. Endocrinol. Metab., 30, 593-603. DOI: https://doi.org/10.3803/EnM.2015.30.4.593

Ando, K., Oki, E., Zhao, Y., Ikawa-Yoshida, A., Kitao, H., Saeki, H., & Maehara, Y. (2014). Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer, 17, 255-262. DOI: https://doi.org/10.1007/s10120-013-0279-1

Chen, J., Liu, W.B., Jia, W.D., Xu, G.L., Ma, J.L., Huang, M., …, & Li, J.S. (2014). Overexpression of Mortalin in hepatocellular carcinoma and its relationship with angiogenesis and epithelial to mesenchymal transition. Int. J. Oncol., 44, 247-255. DOI: https://doi.org/10.3892/ijo.2013.2161

Rozenberg, P., Kocsis, J., Saar, M., Prohászka, Z., Füst, G., & Fishelson, Z. (2013). Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. Int. J. Cancer, 133, 514-518. DOI: https://doi.org/10.1002/ijc.28029

Iosefson, O., & Azem, A. (2010). Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins—identification of additional interacting regions. FEBS Lett., 584, 1080-1084. DOI: https://doi.org/10.1016/j.febslet.2010.02.019

Lu, W.J., Lee, N.P., Kaul, S.C., Lan, F., Poon, R.T., Wadhwa, R., & Luk, J.M. (2011). Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ, 18, 1046–1056. DOI: https://doi.org/10.1038/cdd.2010.177

Gestl, E.E., & Anne Böttger, S. (2012). Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochem. Biophys. Res. Commun. 423, 411–416. DOI: https://doi.org/10.1016/j.bbrc.2012.05.139

Wu, P.K., Hong, S.K., & Park, J.I. (2017). Steady-state levels of phosphorylated mitogen-activated protein kinase kinase 1/2 determined by mortalin/HSPA9 and protein phosphatase 1 α in KRAS and BRAF tumor cells. Mol. Cell. Biol., 37 (18), pii: e00061-17.

Caria, P., Dettori, T., Frau, D.V., Lichtenzstejn, D., Pani, F., Vanni, R., & Mai, S. (2019). Characterizing the three-dimensional organization of telomeres in papillary thyroid carcinoma cells. J. Cell. Physiol., 234, 5175-5185. DOI: https://doi.org/10.1002/jcp.27321

Moon, S., Song, Y.S., Kim, Y.A., Lim, J.A., Cho, S.W., Moon, J.H., …, & Park, Y.J. (2017). Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: A meta-analysis. Thyroid, 27, 651-660. DOI: https://doi.org/10.1089/thy.2016.0350

Dougherty, M.K., Mu¨ller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., …, Morrison, D.K. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell, 17 (2), 215-224. DOI: https://doi.org/10.1016/j.molcel.2004.11.055

Eblen, S.T., Slack-Davis, J.K., Tarcsafalvi, A., Parsons, J.T., Weber, M.J., & Catling, A.D. (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell Biol., 24 (6), 2308-2317. DOI: https://doi.org/10.1128/MCB.24.6.2308-2317.2004

Brown, M.D., & Sacks, D.B. (2009). Protein scaffolds in MAP kinase signalling. Cell Signal., 21 (4), 462-469 DOI: https://doi.org/10.1016/j.cellsig.2008.11.013

Caunt, C.J., & Keyse, S.M. (2013). Dual-specificity MAP kinase phosphatases (MKPs). FEBS J., 280 (2), 489-504. DOI: https://doi.org/10.1111/j.1742-4658.2012.08716.x

Huang, C.Y., & Tan, T.H. (2012). DUSPs, to MAP kinases and beyond. Cell Biosci., 2 (1), 24. DOI: https://doi.org/10.1186/2045-3701-2-24

Published

2019-11-05

How to Cite

Guda, B. B., Pushkarev, V. V., Kovzun, O. I., Pushkarev, V. P., & Tronko, M. D. (2019). Toxicity of mapk in thyroid carcinoma. Mechanisms of suppression of signal Cascade (review of literature and own data). Hospital Surgery. Journal Named by L.Ya. Kovalchuk, (3), 84–96. https://doi.org/10.11603/2414-4533.2019.3.10551

Issue

Section

REVIEWS