Toxicity of mapk in thyroid carcinoma. Mechanisms of suppression of signal Cascade (review of literature and own data)
DOI:
https://doi.org/10.11603/2414-4533.2019.3.10551Keywords:
oncogenes, malignant tumors, thyroid gland, MAPK, mortalinAbstract
The aim of the work: to study the activity and expression of the main effector protein kinase cascade in tumors of thyroid gland.
There is a strong evidence that the Ras/Raf/MEK/ERK (МАРК) signaling cascade promotes cell proliferation and malignancy by stimulating cell growth and division, as well as inhibiting apoptosis. The mitogenic MAPK cascade associates growth factor signals at cell surface receptors with the transcription factors AP-1, NF-κB, Ets, leading to the induction of c-Fos, cyclin D1 and c-Myc. These factors regulate the expression of genes that control survival, angiogenesis, growth, proliferation, and cell motility. However, the hyperactivity of this cascade in tumor tissues can lead to sensescence, growth retardation, apoptosis or increased autophagy. This phenomenon was called "oncogenic toxicity".
References
Wortzel, I., & Seger, R. (2011). The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2 (3), 195-209. DOI: https://doi.org/10.1177/1947601911407328
Beeram, M., Patnaik, A., & Rowinsky, E.K. (2005). Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol., 23, 6771-6790. DOI: https://doi.org/10.1200/JCO.2005.08.036
Mendoza, M.C., Er, E.E., & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci., 36 (6), 320-328. DOI:10.1016/j.tibs.2011.03.006. DOI: https://doi.org/10.1016/j.tibs.2011.03.006
Lake, D., Corrêa, S.A., & Müller, J. (2016). Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol. Life Sci., 73 (23), 4397-4413. DOI: https://doi.org/10.1007/s00018-016-2297-8
Berridge, M.J. (2014). Cell Signalling Pathways. Cell Signalling Biology, 138 doi:10.1042/csb0001002. DOI: https://doi.org/10.1042/csb0001002
McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W., Chang, F., …, Franklin, R.A. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem. Biophys. Acta., 1773 (8), 1263-1284. DOI: https://doi.org/10.1016/j.bbamcr.2006.10.001
Xing, M. (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer, 13, 184-199. DOI: https://doi.org/10.1038/nrc3431
Xie, J., Fan, Y., & Zhang, X. (2016). Molecular mechanisms in differentiated thyroid cancer. Front Biosci. (Landmark ed.), 21, 119-129. DOI: https://doi.org/10.2741/4379
Yakushina, V.D., Lerner, L.V., & Lavrov, A.V. (2018). Gene fusions in thyroid cancer. Thyroid, 28 (2), 158-167. DOI: https://doi.org/10.1089/thy.2017.0318
Starenki, D., Sosonkina, N., Hong, S.K., Lloyd, R.V., & Park, J.I. (2019). Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. Int. J. Mol. Sci., 26, 20 (9). pii: E2069.
Pushkarev, V.M., Starenki, D.V., Saenko, V.A., Namba, H., Kurebayashi, J., Tronko, M.D., & Yamashita, S. (2004). Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology, 145 (7), 3143-3152. DOI: https://doi.org/10.1210/en.2004-0127
Popadiuk, I.D., Pushkarov, V.M., Kostiuchenko, N.M., & Tronko, M.D. (2008). Uchast MARK u oposeredkuvanni dii protypukhlynnoho preparatu taksolu na klityny ana-plastychnoho raku shchytopodibnoi zalozy [MAPK involvement in mediating the action of the anticancer drug taxol on anaplastic thyroid cancer cells]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 2, 174-177 [in Ukrainian].
Milosevic, Z., Pesic, M., Stankovic, T., Dinic, J., Milovanovic, Z., Stojsic, J., …, Bankovic, J. (2014). Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res., 164 (5), 411-423. DOI: https://doi.org/10.1016/j.trsl.2014.06.005
Sáez, J.M. (2013). Treatment directed to signalling molecules in patients with advanced differentiated thyroid cancer. Anticancer Agents Med. Chem., 13 (3), 483-495.
Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kovalenko, A. Ye., Taraschenko, Y.M., Kovzun, O.I. & Tronko, M.D. (2015). The expression and activation of extracellular signal-regulated kinase-1/2 and proliferating cell nuclear antigen content in normal tissue and human thyroid tumors. SM J. Endocrinol. Metab., 1 (1), 1002.
Huda, B.B., Pushkarov, V.V., Zhuravel, O.V., Kovalenko, A. Ye., Pushkarov, V.M., Zurnadzhy, L.Yu., …, & Tronko M.D. (2015). Ekspresiia yadernoho antyhenu proliferuiuchykh klityn (PCNA) v normalnykh tkanynakh ta dobroiakisnykh, vysokodyferentsiiovanykh zloiakisnykh (z naiavnistiu metastatychnoho urazhennia ta bez metastaziv) pukhlynakh shchytopodibnoi zalozy liudyny [Expression of proliferating cell nuclear antigen (PCNA) in normal tissues and benign, highly differentiated malignancies (with metastatic lesions and without metastases) in human thyroid tumors]. Dop. NAN Ukrainy – Report of the NAS of Ukraine, 10, 93-97 [in Ukrainian].
Huda, B.B., Pushkarov, V.M., Kovalenko, A.Ye., Pushkarov, V.V., Tarashchenko, Yu.M., Kovzun, O.I., & Tronko, M.D. (2017). Aktyvnist proteinkinazy V ta pozaklitynnoi syhnal-rehulovanoi kinazy-1/2 v pukhlynakh shchytopodibnoi zalozy, normalizovana shchodo ekspresii proteinkinaz v tkanyni [Protein kinase B activity and extracellular signal-regulated kinase-1/2 in thyroid tumors normalized to tissue kinase expression]. Problemy endokrynnoi patolohii – Problems of Endocrine Pathology, 2, 38-43; 38-43 [in Ukrainian].
Guda, B.B., Pushkarev, V.M., Pushkarev, V.V., Kovalenko, A.Ye., Taraschenko, Y.M., Zhuravel, O.V., …, & Tronko, M.D. (2016). Role of mitogen-activated protein kinase (MAPK) in processes of proliferation in human thyroid tumors. Endocrinology, 21, 1, 5-9.
Pushkarev, V.M., Guda, B.B., Pushkarev, V.V., & Tronko, M.D. (2018). Toxicity of oncogenes in thyroid сarcinomas and other tumor types. Cytology and Genetics, 52, 1, 54-61. DOI: https://doi.org/10.3103/S0095452718010103
Lee, J.U., Huang, S., Lee, M.H., Lee, S.E., Ryu, M.J., Kim, S.J., …, & Y.S. Jo. (2012). Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer. European Journal of Endocrinology, 167, 93-101. DOI: https://doi.org/10.1530/EJE-12-0010
McCubrey, J.A., Milella, M., Tafuri, A., Martelli, A.M., Lunghi, P., Bonati, A., …, & Steelman, L.S. (2008). Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors. Curr. Opin. Investig. Drugs, 9 (6), 614-630.
Bric, A., Miething, C., Bialucha, C.U., Scuoppo, C., Zender, L., Krasnitz, A., ..., & Lowe, S.W. (2009). Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell., 16, 324-335. DOI: https://doi.org/10.1016/j.ccr.2009.08.015
Deschenes-Simard, X., Gaumont-Leclerc, M.F., Bourdeau, V., Lessard, F., Moiseeva, O., Forest, V., ..., & Ferbeyre, G. (2013). Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev., 27, 900-915. DOI: https://doi.org/10.1101/gad.203984.112
Deschenes-Simard, X., Kottakis, F., Meloche, S., & Ferbeyre, G. (2014). ERKs in cancer: friends or foes? Cancer Res., 74 (2), 412-419.
Park, J.I., Strock, C.J., Ball, D.W., & Nelkin, B.D. (2003). The Ras/Raf/MEK/Extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol. Cell Biol., 23 (2), 543-554. DOI: https://doi.org/10.1128/MCB.23.2.543-554.2003
Park, J.I. (2014a). Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Front Biol (Beijing)., 9 (2), 95-103. DOI: https://doi.org/10.1007/s11515-014-1299-x
Arthan, D., Hong, S.K., & Park, J.I. (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett., 297 (1), 31-41. DOI: https://doi.org/10.1016/j.canlet.2010.04.021
Hong, S.K., Yoon, S., Moelling, C., Arthan, D., & Park, J.I. (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J. Biol. Chem., 284 (48), 33006-330018. DOI: https://doi.org/10.1074/jbc.M109.012591
Kim, E.J., Park, J.I., & Nelkin, B.D. (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J. Biol. Chem., 280, 4913-4920. DOI: https://doi.org/10.1074/jbc.M410542200
Falco, A., Festa, M., Basile, A., Rosati, A., Pascale, M., Florenzano, F., ..., Turco, M.C. (2012). BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene, 20, 31 (50), 5153-5161. DOI: https://doi.org/10.1038/onc.2012.17
Ohtsuka, S., Ogawa, S., Wakamatsu, E., Abe, R. (2016). Cell cycle arrest caused by MEK/ERK signaling is a mechanism for suppressing growth of antigen-hyperstimulated effector T cells. Int. Immunol., 28 (11), 547-557. DOI: https://doi.org/10.1093/intimm/dxw037
Zakrzewska, M., Haugsten, E.M., Nadratowska-Wesolowska, B., Oppelt, A., Hausott, B., Jin, Y., ..., & Wiedlocha, A. (2013). ERK-mediated phosphorylation of fibroblast growth factor receptor 1 on Ser777 inhibits signaling. Sci. Signal., 6 (262), ra11.
Leontieva, O.V., & Blagosklonny, M.V. (2014). Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget., 5 (24), 12715-12727. DOI: https://doi.org/10.18632/oncotarget.3011
Taylor, J.R., Lehmann, B.D., Chappell, W.H., Abrams, S.L., Steelman, L.S., & McCubrey, J.A. (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget., 2 (8), 610-626. DOI: https://doi.org/10.18632/oncotarget.315
Adams, P.D. (2009). Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell., 36, 2-14. DOI: https://doi.org/10.1016/j.molcel.2009.09.021
Leidal, A.M., Cyr, D.P., Hill, R.J., Lee, P.W., & McCormick, C. (2012). Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe., 11 (2), 167-180. DOI: https://doi.org/10.1016/j.chom.2012.01.005
Bansal, R., & Nikiforov, M.A. (2010). Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle., 9, 2782-2788. DOI: https://doi.org/10.4161/cc.9.14.12251
Young, A.R., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J.F., ..., Narita, M. (2009). Autophagy mediates the mitotic senescence transition. Genes Dev., 23, 798-803. DOI: https://doi.org/10.1101/gad.519709
Shin, J., Yang, J., Lee, J.C., & Baek, K.H. (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal., 25 (12), 2540-2547. DOI: https://doi.org/10.1016/j.cellsig.2013.08.014
Cagnol, S., & Chambard, J.C. (2010). ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J., 277 (1), 2-21. DOI: https://doi.org/10.1111/j.1742-4658.2009.07366.x
Li, G., He, Y., Yao, J., Huang, C., Song, X., Deng, Y., ..., & Liu, H. (2016). Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol. Rep., 36 (6), 3504-3512. DOI: https://doi.org/10.3892/or.2016.5166
Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., ..., Mograbi, B. (2006). Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res., 66, 6861-6870. DOI: https://doi.org/10.1158/0008-5472.CAN-05-3557
Zhao, Y., Fan, D., Zheng, Z.P., Li, E.T., Chen, F., Cheng, K.W., & Wang, M. (2017). 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Mol. Nutr. Food Res., 61 (2), doi: 10.1002/mnfr.201600437. DOI: https://doi.org/10.1002/mnfr.201600437
Chen, S.Y., Chiu, L.Y., Ma, M.C., Wang, J.S., Chien, C.L., & Lin, W.W. (2011). zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy., 7, 217-228. DOI: https://doi.org/10.4161/auto.7.2.14212
Blasco, R.B., Francoz, S., Santamaria, D., Cañamero, M., Dubus, P., Charron, J., …, Barbacid, M. (2011). c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non–small cell lung carcinoma. Cancer Cell., 19, 652-663. DOI: https://doi.org/10.1016/j.ccr.2011.04.002
Mebratu, Y., & Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle., 8 (8), 1168-1175. DOI: https://doi.org/10.4161/cc.8.8.8147
Wu, P.K., Hong, S.K., Veeranki, S., Karkhanis, M., Starenki, D., Plaza, J.A., & Park J. I. (2013). A Mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/Extracellular signal-regulated kinase. Mol. Cell Biol., 33 (20), 4051-4067. DOI: https://doi.org/10.1128/MCB.00021-13
Park, S.J., Shin, J.H., Jeong, J.I., Song, J.H., Jo, Y.K., Kim, E.S., …, & Cho, D.H. (2014b). Down-regulation of mortalin exacerbates αβ-mediated mitochondrial fragmentation and dysfunction. J. Biol. Chem. 289, 2195-2204. DOI: https://doi.org/10.1074/jbc.M113.492587
Ryu, J., Kaul, Z., Yoon, A.R., Liu, Y., Yaguchi, T., Na, Y., …, Wadhwa, R. (2014). Identification and functional characterization of nuclear mortalin in human carcinogenesis. J. Biol. Chem., 289 (36), 24832-54844. doi: 10.1074/jbc.M114.565929. DOI: https://doi.org/10.1074/jbc.M114.565929
Starenki, D., Hong, S.K., Lloyd, R.V., & Park, J.I. (2015a). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34 (35), 4624-4634. DOI: https://doi.org/10.1038/onc.2014.392
Starenki, D., & Park, J. I. (2015b). Selective mitochondrial uptake of MKT-077 can suppress medullary thyroid carcinoma cell survival in vitro and in vivo. Endocrinol. Metab., 30, 593-603. DOI: https://doi.org/10.3803/EnM.2015.30.4.593
Ando, K., Oki, E., Zhao, Y., Ikawa-Yoshida, A., Kitao, H., Saeki, H., & Maehara, Y. (2014). Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer, 17, 255-262. DOI: https://doi.org/10.1007/s10120-013-0279-1
Chen, J., Liu, W.B., Jia, W.D., Xu, G.L., Ma, J.L., Huang, M., …, & Li, J.S. (2014). Overexpression of Mortalin in hepatocellular carcinoma and its relationship with angiogenesis and epithelial to mesenchymal transition. Int. J. Oncol., 44, 247-255. DOI: https://doi.org/10.3892/ijo.2013.2161
Rozenberg, P., Kocsis, J., Saar, M., Prohászka, Z., Füst, G., & Fishelson, Z. (2013). Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. Int. J. Cancer, 133, 514-518. DOI: https://doi.org/10.1002/ijc.28029
Iosefson, O., & Azem, A. (2010). Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins—identification of additional interacting regions. FEBS Lett., 584, 1080-1084. DOI: https://doi.org/10.1016/j.febslet.2010.02.019
Lu, W.J., Lee, N.P., Kaul, S.C., Lan, F., Poon, R.T., Wadhwa, R., & Luk, J.M. (2011). Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ, 18, 1046–1056. DOI: https://doi.org/10.1038/cdd.2010.177
Gestl, E.E., & Anne Böttger, S. (2012). Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochem. Biophys. Res. Commun. 423, 411–416. DOI: https://doi.org/10.1016/j.bbrc.2012.05.139
Wu, P.K., Hong, S.K., & Park, J.I. (2017). Steady-state levels of phosphorylated mitogen-activated protein kinase kinase 1/2 determined by mortalin/HSPA9 and protein phosphatase 1 α in KRAS and BRAF tumor cells. Mol. Cell. Biol., 37 (18), pii: e00061-17.
Caria, P., Dettori, T., Frau, D.V., Lichtenzstejn, D., Pani, F., Vanni, R., & Mai, S. (2019). Characterizing the three-dimensional organization of telomeres in papillary thyroid carcinoma cells. J. Cell. Physiol., 234, 5175-5185. DOI: https://doi.org/10.1002/jcp.27321
Moon, S., Song, Y.S., Kim, Y.A., Lim, J.A., Cho, S.W., Moon, J.H., …, & Park, Y.J. (2017). Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: A meta-analysis. Thyroid, 27, 651-660. DOI: https://doi.org/10.1089/thy.2016.0350
Dougherty, M.K., Mu¨ller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., …, Morrison, D.K. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell, 17 (2), 215-224. DOI: https://doi.org/10.1016/j.molcel.2004.11.055
Eblen, S.T., Slack-Davis, J.K., Tarcsafalvi, A., Parsons, J.T., Weber, M.J., & Catling, A.D. (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell Biol., 24 (6), 2308-2317. DOI: https://doi.org/10.1128/MCB.24.6.2308-2317.2004
Brown, M.D., & Sacks, D.B. (2009). Protein scaffolds in MAP kinase signalling. Cell Signal., 21 (4), 462-469 DOI: https://doi.org/10.1016/j.cellsig.2008.11.013
Caunt, C.J., & Keyse, S.M. (2013). Dual-specificity MAP kinase phosphatases (MKPs). FEBS J., 280 (2), 489-504. DOI: https://doi.org/10.1111/j.1742-4658.2012.08716.x
Huang, C.Y., & Tan, T.H. (2012). DUSPs, to MAP kinases and beyond. Cell Biosci., 2 (1), 24. DOI: https://doi.org/10.1186/2045-3701-2-24
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish their work in Hospital Surgery. Journal by L. Ya. Kovalchuk agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)