IMMUNOHISTOCHEMICAL ASSESSMENT OF CD20 EXPRESSION IN RAT KIDNEYS 1 HOUR AFTER ADMINISTRATION OF LEIURUS MACROCTENUS SCORPION VENOM

Authors

DOI:

https://doi.org/10.11603/2414-4533.2025.4.15823

Keywords:

venom, scorpions, kidneys, inflammation, rats

Abstract

The aim of the work: to assess the degree of CD20 expression in the kidneys of rats 1 hour after the administration of the venom of the scorpion Leiurus macroctenus.

Materials and Methods. The study used 10 white male laboratory rats weighing 200 g (±10 g). The venom of scorpions from the Buthidae family, specifically the genus Leiurus and the species Leiurus macroctenus, was administered to rats intramuscularly (0.5 ml of a previously dissolved venom solution in saline; 28.8 μg/ml; LD50 = 0.08 mg/kg). To identify the subpopulation of CD20 cells in kidney tissue, rabbit recombinant primary antibody Anti-CD20 (ab64088, Abcam, USA) was used.

Results. In the kidney parenchyma of control rats, the CD20 precipitate was not detected. Immunohistochemical staining is negative in all morphological structures, particularly in the renal corpuscles, nephron tubules, and interstitium. After 1 hour of the experiment, following the administration of scorpion Leiurus macroctenus venom, immunohistochemical studies of the kidney revealed single CD20 cells, which are rarely found, scattered mainly in the peritubular interstitium without a tendency to group.

Conclusions. One hour after the administration of Leiurus macroctenus venom to rats, a low level of CD20 expression was observed in the kidney tissue of animals with single B lymphocytes in the peritubular interstitium, indicating an early stage of the humoral response.

Author Biography

R. M. MATKIVSKA, Bogomolets National Medical University, Kyiv, Ukraine

PhD (Medicine), Associate Professor of the Department of Descriptive and Clinical Anatomy

References

Chen N, Xu S, Zhang Y, Wang F. Animal protein toxins: origins and therapeutic applications. Biophys Rep. 2018; 4(5):233-42. DOI: 10.1007/s41048-018-0067-x.

Avalo Z, Barrera MC, Agudelo-Delgado M, Tobón GJ, Cañas CA. Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel). 2022; 14(5):344. DOI: 10.3390/toxins14050344.

Abd El-Aziz FEA, El Shehaby DM, Elghazally SA, Hetta HF. Toxicological and epidemiological studies of scorpion sting cases and morphological characterization of scorpions (Leiurusquin questriatus and Androctonus crassicauda) in Luxor, Egypt. Toxicol Rep. 2019; 6:329-35. DOI: 10.1016/j.toxrep.2019.03.004.

Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014; 51:35-45. DOI: 10.1016/j.peptides.2013.10.021.

Bahloul M, Regaieg K, Chabchoub I, Kammoun M, Chtara K, Bouaziz M. Severe scorpion envenomation: pathophysiology and the role of inflammation in multiple organ failure. Med Sante Trop. 2017; 27(2):214-21. DOI: 10.1684/mst.2017.0688.

Özkan Ö, Filazi A. The determination of acute lethal dose-50 (LD50) levels of venom in mice, obtained by different methods from scorpions, Androctonus crassicauda (Oliver 1807). Turkiye Parazitol Derg. 2004; 28(1):50-3.

Dobrelya NV, Boytsova LV, Danova IV. Pravova baza dlya provedennya etychnoyi ekspertyzy doklinichnykh doslidzhenʹ likarsʹkykh zasobiv z vykorystannyam laboratornykh tvaryn [Legal basis for conducting ethical expertise of preclinical studies of medicinal products using laboratory animals]. Farmakolohiya ta likarsʹka toksykolohiya. 2015; 2:95-100. Ukrainian.

Bahriy MM, Dibrova VA, Popadynetsʹ OH, Hryshchu, MI. Metodyky morfolohichnykh doslidzhenʹ [Methods of morphological research]. Vinnytsya. Nova Knyha. 2016; 328. Ukrainian.

Horalʹsʹkyy LP, Khomych VT, Kononsʹkyy OI. Osnovy histolohichnoyi tekhniky i morfofunktsionalʹni metody doslidzhenʹ u normi ta pry patolohiyi [Fundamentals of histological techniques and morphofunctional research methods in normal and pathological conditions]. Zhytomyr. Polissya. 2011; 286. Ukrainian.

Pober JS, Merola J, Liu R, Manes TD. Antigen Presentation by Vascular Cells. Front Immunol. 2017; 8:1907. DOI: 10.3389/fimmu.2017.01907.

Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev. 2017; 16(9):951-62. DOI: 10.1016/j.autrev.2017.07.008.

Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol. 2016; 36(10):2048-57. DOI: 10.1161/ATVBAHA.116.307610.

Dalal PJ, Muller WA, Sullivan DP. Endothelial Cell Calcium Signaling during Barrier Function and Inflammation. Am J Pathol. 2020; 190(3):535-42. DOI: 10.1016/j.ajpath.2019.11.004.

de Andrade CM, Rey FM, Cintra ACO, Sampaio SV, Torqueti MR. Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol. 2019; 134:613-21. DOI: 10.1016/j.ijbiomac.2019.05.019.

Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Involvement of Toll-like Receptor 4 in Neutrophil-Mediated Inflammation, Oxidative Stress and Tissue Damage Induced by Scorpion Venom. Inflammation. 2020; 43(1):155-67. DOI: 10.1007/s10753-019-01105-y.

Zoccal KF, Bitencourt Cda S, Paula-Silva FW, et al. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One. 2014; 9(2):e88174. DOI: 10.1371/journal.pone.0088174.

Leiguez E, Giannotti KC, Moreira V, et al. Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One. 2014; 9(4):e93741. DOI: 10.1371/journal.pone.0093741.

Moreira V, Teixeira C, Borges da Silva H, D'Império Lima MR, Dos-Santos MC. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon. 2016; 118:121-8. DOI: 10.1016/j.toxicon.2016.04.042.

Zoccal KF, Ferreira GZ, Prado MKB, Gardinassi LG, Sampaio SV, Faccioli LH. LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon. 2018; 150:289-96. DOI: 10.1016/j.toxicon.2018.06.066.

Palm NW, Medzhitov R. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci USA. 2013; 110(5):1809-14. DOI: 10.1073/pnas.1221476110.

Zoccal KF, Sorgi CA, Hori JI. Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat Commun. 2016; 7:10760. DOI: 10.1038/ncomms10760.

Thangam EB, Jemima EA, Singh H, et al. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol. 2018; 9:1873. DOI: 10.3389/fimmu.2018.01873.

Niedoszytko M, Bonadonna P, Oude Elberink JN, Golden DB. Epidemiology, diagnosis, and treatment of Hymenoptera venom allergy in mastocytosis patients. Immunol Allergy Clin North Am. 2014; 34(2):365-81. DOI: 10.1016/j.iac.2014.02.004.

Galli SJ, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against venoms: Possible "good side" of allergy? Allergol Int. 2016; 65(1):3-15. DOI: 10.1016/j.alit.2015.09.002.

Kovacova-Hanuskova E, Buday T, Gavliakova S, Plevkova J. Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr). 2015; 43(5):498-506. DOI: 10.1016/j.aller.2015.05.001.

Krystel-Whittemore M, Dileepan KN, Wood JG. Mast Cell: A Multi-Functional Master Cell. Front Immunol. 2016; 6:620. DOI: 10.3389/fimmu.2015.00620.

Downloads

Published

2025-12-30

How to Cite

MATKIVSKA, R. M. (2025). IMMUNOHISTOCHEMICAL ASSESSMENT OF CD20 EXPRESSION IN RAT KIDNEYS 1 HOUR AFTER ADMINISTRATION OF LEIURUS MACROCTENUS SCORPION VENOM. Hospital Surgery. Journal Named by L.Ya. Kovalchuk, (4), 138–142. https://doi.org/10.11603/2414-4533.2025.4.15823

Issue

Section

EXPERIMENTAL INVESTIGATIONS