DOCKING AND QUANTUM CHEMICAL INSIGHTS INTO THE ANTICANCER MECHANISMS OF MONOCHLOROACETIC AND DICHLOROACETIC ACIDS DERIVATIVES

Authors

DOI:

https://doi.org/10.11603/2312-0967.2024.4.15007

Keywords:

dichloroacetate, dichloroacetic acid, dichloroacetamide, monochloroacetate, monochloroacetic acid, monochloroacetamide, quantum chemical calculations, docking simulation, antitumor activity, tumors

Abstract

The aim of the work. The present study aims to conduct the comparative quantum chemical analysis of MCA and DCA derivatives, their reactivity in interaction with protein targets, and the determination of the molecular mechanisms underlying their biological activity.

Materials and Methods. The study employed quantum chemical calculations and molecular docking to investigate synthesized compounds' electronic properties and biological interactions. Structures were optimized using DFT (B3LYP/6-311++G(d,p)) in Gaussian 09, with vibrational analyses confirming transition states. Key electronic descriptors were computed to assess reactivity. The results of quantum chemical calculations were visualized using GaussView 5.0.8. Docking simulations involved modeling glutathione-chloroacetamide conjugates at physiological pH, minimizing structures in Avogadro software, and analyzing interactions with GST (PDB ID: 11GS) using the FlexX algorithm in LeadIT. Binding interactions were visualized via BIOVIA Discovery Studio, with docking parameters validated by RMSD comparison to experimental data.

Results and Discussion. Analysis of frontier molecular orbitals and descriptors associated with their energy showed an increase in MCA activity with increasing electrophilicity. Although on individual lines, the results that fell out of this dependence may be related to their structure peculiarities. The molecular electrostatic potential analysis showed the steric hindrances’ presence due to the generous size of chlorine atoms, which reduce the possibilities for the MCA attack. The change in the Gibbs energy of the substitution reaction also indicates an easier substitution course in MCA. The molecular docking results showed the possibility of effective covalent binding to glutathione S-transferase of both MCA and DCA. However, another reason for the decrease in activity is the possibility of the DCA adduct hydrolysis with glutathione since the studied compounds do not prevent water access when binding in the active center.

Conclusions. The decrease in the DCA reactivity compared to MCA analogs is associated with steric hindrances and the chlorine atom influence in the transition state. In general, DCA's lower biological activity is associated with decreased reactivity and the possibility of joining cysteine residues to their hydrolysis products. The obtained results can become the basis for creating new targeted drugs with increased efficiency and selectivity.

Author Biographies

L. M. Havryshchuk, Ivano-Frankivsk National Medical University

Assistant professor, Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

D. O. Melnyk, Ivano-Frankivsk National Medical University

Associate professor, Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education

D. V. Khylyuk, Medical University of Lublin

Assistant professor, Department of Organic Chemistry

V. Ya. Horishny, Danylo Halytsky Lviv National Medical University

PhD (Pharmacy), Associate professor, Department of Pharmaceutical, Organic and Bioorganic Chemistry

R. B. Lesyk, Danylo Halytsky Lviv National Medical University

DSc (Pharmacy), Professor, Head of the Department, Department of Pharmaceutical, Organic and Bioorganic Chemistry

References

Feng M, Wang J, Zhou J. Unraveling the therapeutic mechanisms of dichloroacetic acid in lung cancer through integrated multi-omics approaches: metabolomics and transcriptomics. Front Genet [Internet]. 2023;14:1199566. DOI: 10.3389/fgene.2023.1199566 DOI: https://doi.org/10.3389/fgene.2023.1199566

Hossain M, Roth S, Dimmock JR, Das U. Cytotoxic derivatives of dichloroacetic acid and some metal complexes. Arch Pharm (Weinheim) [Internet]. 2022;355(11):2200236. DOI: 10.1002/ardp.202200236 DOI: https://doi.org/10.1002/ardp.202200236

Tataranni T, Piccoli C. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxid Med Cell Longev [Internet]. 2019;2019:8201079. DOI: 10.1155/2019/8201079 DOI: https://doi.org/10.1155/2019/8201079

Chen G, Jiang N, Villalobos Solis MI, Kara Murdoch F, Murdoch RW, Xie Y, et al. Anaerobic microbial metabolism of dichloroacetate. MBio [Internet]. 2021;12(2). DOI: 10.1128/mBio.00537-21 DOI: https://doi.org/10.1128/mBio.00537-21

Havryshchuk L, Horishny V, Ivasechko I, Kozak Y, Lesyk R. Mono- and dichloroacetic acid derivatives as potential anticancer agents. All-Ukrainian scientific conference «Actual problems of chemistry: research and prospects». The conference materials. 2024 May 01; Zhytomyr, Ukraine. Zhytomyr, Ukraine: Zhytomyr Ivan Franko State University; 2024. P. 153-5.

Havryshchuk L, Horishny V, Lesyk R. Study of acetic acid chloroderivatives as compounds with antitumor activity [Дослідження хлоропохідних оцтової кислоти як сполук з протипухлинною активністю]. XXII All-Ukrainian conference of young scientists and students on modern chemistry topical issues. The conference materials. 2024 May 20-23; Dnipro, Ukraine. Dnipro, Ukraine: Dnipro National University named after Oles Honchar; 2024. P. 49-51.

Aguiar C, Camps I. Molecular docking in drug discovery: Techniques, applications, and advancements [Internet]. ChemRxiv. 2024. DOI: 10.26434/chemrxiv-2024-gmhtx DOI: https://doi.org/10.26434/chemrxiv-2024-gmhtx

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.02. Wallingford, CT: Gaussian, Inc.; 2016.

Dennington R, Keith TA, Millam JM. GaussView, Version 5.0.8. Shawnee Mission, KS: Semichem Inc.; 2016.

Reina M, Castañeda-Arriaga R, Perez-Gonzalez A, Guzman-Lopez EG, Tan D-X, Reiter RJ, et al. A computer-assisted systematic search for melatonin derivatives with high potential as antioxidants. Melatonin Res [Internet]. 2018;1(1):27-58. DOI: 10.32794/mr11250003 DOI: https://doi.org/10.32794/mr11250003

Spiegel M. Current trends in computational quantum chemistry studies on antioxidant radical scavenging activity. J Chem Inf Model [Internet]. 2022;62(11):2639-58. DOI: 10.1021/acs.jcim.2c00104 DOI: https://doi.org/10.1021/acs.jcim.2c00104

Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem [Internet]. 1996;17(5-6):490-519. DOI: 10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem [Internet]. 1999;20(7):720-9. DOI: 10.1002/(sici)1096-987x(199905)20:7<720::aid-jcc7>3.0.co;2-x DOI: https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Software Open Access Avogadro: an advanced semantic chemical editor, visualization, and analysis platform [Internet]. Vol. 4, Journal of Cheminformatics. 2012. Available from: http://www.jcheminf.com/content/4/1/17 DOI: https://doi.org/10.1186/1758-2946-4-17

Oakley AJ, Lo Bello M, Mazzetti AP, Federici G, Parker MW. The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1‐1 in two different modes. FEBS Lett [Internet]. 1997;419(1):32-6. DOI: 10.1016/s0014-5793(97)01424-5 DOI: https://doi.org/10.1016/S0014-5793(97)01424-5

Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins [Internet]. 1999;37(2):228-41. DOI: 10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8 DOI: https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8

Yusuf D, Davis AM, Kleywegt GJ, Schmitt S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J Chem Inf Model [Internet]. 2008;48(7):1411-22. DOI: 10.1021/ci800084x DOI: https://doi.org/10.1021/ci800084x

Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdiscip Rev Comput Mol Sci [Internet]. 2022;12(5). DOI: 10.1002/wcms.1601 DOI: https://doi.org/10.1002/wcms.1601

Shin D, Jung Y. Molecular electrostatic potential as a general and versatile indicator for electronic substituent effects: statistical analysis and applications. Phys Chem Chem Phys [Internet]. 2022;24(42):25740-52. DOI: 10.1039/d2cp03244a DOI: https://doi.org/10.1039/D2CP03244A

Yamane D, Tetsukawa R, Zenmyo N, Tabata K, Yoshida Y, Matsunaga N, et al. Expanding the chemistry of dihaloacetamides as tunable electrophiles for reversible covalent targeting of cysteines. J Med Chem [Internet]. 2023;66(13):9130-46. DOI: 10.1021/acs.jmedchem.3c00737 DOI: https://doi.org/10.1021/acs.jmedchem.3c00737

Fumarola C, Bozza N, Castelli R, Ferlenghi F, Marseglia G, Lodola A, et al. Expanding the arsenal of FGFR inhibitors: A novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front Oncol [Internet]. 2019;9. DOI: 10.3389/fonc.2019.00179 DOI: https://doi.org/10.3389/fonc.2019.00179

Castelli R, Bozza N, Cavazzoni A, Bonelli M, Vacondio F, Ferlenghi F, et al. Balancing reactivity, and antitumor activity: heteroarylthioacetamide derivatives as potent and time-dependent inhibitors of EGFR. Eur J Med Chem [Internet]. 2019;162:507-24. DOI: 10.1016/j.ejmech.2018.11.029 DOI: https://doi.org/10.1016/j.ejmech.2018.11.029

Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther [Internet]. 2005;315(3):971-9. DOI: 10.1124/jpet.105.084145 DOI: https://doi.org/10.1124/jpet.105.084145

Ma X, Zhang Y, Guan M, Zhang W, Tian H, Jiang C, et al. Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and in vivo. Int J Mol Med [Internet]. 2021;47(6). DOI: 10.3892/ijmm.2021.4936 DOI: https://doi.org/10.3892/ijmm.2021.4936

Burgess ER IV, Mishra S, Yan X, Guo Z, Geden CJ, Miller JS, et al. Differential interactions of ethacrynic acid and diethyl maleate with glutathione S-transferases and their glutathione co-factor in the house fly. Pestic Biochem Physiol [Internet]. 2024;205:106170. DOI: 10.1016/j.pestbp.2024.106170 DOI: https://doi.org/10.1016/j.pestbp.2024.106170

Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res [Internet]. 2016;76(1):7-9. DOI: 10.1158/0008-5472.can-15-3143 DOI: https://doi.org/10.1158/0008-5472.CAN-15-3143

Ozgencli I, Kilic D, Guller U, Ciftci M, Kufrevioglu OI, Budak H. A comparison of the inhibitory effects of anti-cancer drugs on Thioredoxin Reductase and glutathione S-Transferase in rat liver. Anticancer Agents Med Chem [Internet]. 2018;18(14):2053-61. Available from: DOI: 10.2174/1871520618666180910093335 DOI: https://doi.org/10.2174/1871520618666180910093335

Downloads

Published

2024-12-30

How to Cite

Havryshchuk, L. M., Melnyk, D. O., Khylyuk, D. V., Horishny, V. Y., & Lesyk, R. B. (2024). DOCKING AND QUANTUM CHEMICAL INSIGHTS INTO THE ANTICANCER MECHANISMS OF MONOCHLOROACETIC AND DICHLOROACETIC ACIDS DERIVATIVES. Pharmaceutical Review Farmacevtičnij časopis, (4), 7–17. https://doi.org/10.11603/2312-0967.2024.4.15007

Issue

Section

Synthesis of biologically active compounds