CHROMATOGRAPHIC PROFILE OF THE HYDROXYCINNAMIC ACIDS OF BILBERRY SHOOTS DRY EXTRACT

Authors

DOI:

https://doi.org/10.11603/2312-0967.2019.4.10701

Keywords:

bilberry shoots, dry extract, hydroxycinnamic acids, high performance liquid chromatography, chromatographic profile, electronic absorption spectra of hydroxycinnamic acids

Abstract

The aim of the work. Study of hydroxycinnamic acids profile of the dry bilberry shoot extract by high performance liquid chromatography.

Materials and Methods. The dried extracts of bilberry shoots, obtained by the fractional maceration method from the crushed domestic origin bilberries shoots using alcohol-aqueous extractant with different ethanol content were used as material for the study. The hydroxycinnamic acid standard samples (Sigma-Aldrich, Fluka) were used to identify the hydroxycinnamic acids. HPLC studies were performed with the liquid chromatograph with a diode array detector (“Waters 2960»,”, USA). The XTerra C18 (“Waters”, USA) chromatographic column with a size of 250x4,6 mm (5 μm) at a temperature of (25±1) ° C was used.

Results and Discussion. HPLC profiles of the bilberry shoots dry extract contained chromatographic peaks corresponding to the retention times of chlorogenic, caffeic, ferulic, trans-p-coumaric and 3-hydroxycinnamic acids. By analyzing their electronic absorption spectra, the presence only of the chlorogenic and caffeic acids was confirmed. A substance with a relative retention time of 4.2 (relative to chlorogenic acid) is characterized by an absorption spectrum identical to the spectrum of chlorogenic acid, that is indicating that this substance is a hydroxycinnamic acid. The HPLC profile of the extract contains chromatographic peaks of three substances whose absorption spectra are similar to those of trans-p-coumaric acid. They may probably belong to isomers or derivatives of this acid. HPLC studies of the hydroxycinnamic acid profiles of dry extracts obtained with the different ethanol content extractants were performed. It has been found that the content of caffeic acid in the dry extract increases but the content of chlorogenic acid decreases with decreasing ethanol content in the extractant. This is probably due with the intensification of the hydrolysis processes of chlorogenic acid to caffeic acid. This leads to a deeper study of this process in order to optimize the technology and to study the stability and storage conditions of the finished extract.

Conclusions. The chromatographic "fingerprinting" method is advisable to use to identify the bilberry shoots dry extract by detecting the chlorogenic, caffeic, unknown hydroxycinnamic (relative retention time and 4.2 relative the chlorogenic acid) and derivatives of the trans-p-coumaric acids in its HPLC profiles, obtained at a detection wavelength of 270 and 330 nm. The comparison of the absorption spectra of the substances with the corresponding retention times is necessary simultaneously with the HPLC profiles studies. Due to the high content of individual hydroxycinnamic acids (chlorogenic, caffeic), the content of a single acid or of the hydroxycinnamic acids amount, in terms of chlorogenic acid, should be selected as one of the quantitative criteria for the quality of the dry extract.

Author Biography

L. V. Vronska, I. Horbachevsky Ternopil National Medical University

PhD (Chemistry), associate professor of the pharmacy department

References

El-Seedi HR, Taher EA, Sheikh BY, Anjum S, Saeed A, AlAjmi MF, Sherief MM et al. Chapter 8-hydroxycinnamic acids: Natural sources, biosynthesis, possible biological activities, and roles in islamic medicine. Studies in Natural Products Chemistry. 2018;55: 269-92. doi:10.1016/B978-0-444-64068-0.00008-5 DOI: https://doi.org/10.1016/B978-0-444-64068-0.00008-5

Çelik EE, Rubio JMA, Andersen ML, Gökmen V. Interactions of dietary fiber bound antioxidants with hydroxycinnamic and hydroxybenzoic acids in aqueous and liposome media. Food Chemistry. 2019;278: 294-304. doi:10.1016/j.foodchem.2018.11.068 DOI: https://doi.org/10.1016/j.foodchem.2018.11.068

Gómez-Juaristi M, Sarria B, Goya L, Bravo-Clemente L, Mateos R. Experimental confounding factors affecting stability, transport and metabolism of flavanols and hydroxycinnamic acids in Caco-2 cells. Food Research International. 2020;129: art. 108797. doi:10.1016/j.foodres.2019.108797 DOI: https://doi.org/10.1016/j.foodres.2019.108797

Park Sung-Hyeuk, Ko Je-Won, Shin Na-Rae, Shin Dong-Ho, Cho Young-Kwon, Seo Chang-Seob, Kim Jong-Choon [et all.]. 4-Hydroxycinnamic acid protects mice from cigarette smoke-induced pulmonary inflammation via MAPK pathways. Food and Chemical Toxicology. 2017;110: 151-5. doi: 10.1016/j.fct.2017.10.027 DOI: https://doi.org/10.1016/j.fct.2017.10.027

Fuentes E, Palomo I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascular Pharmacology. 2014;63(3): 155-61. doi:10.1016/j.vph.2014.10.006 DOI: https://doi.org/10.1016/j.vph.2014.10.006

Weifeng Wang, Wei Sun, Lixia Jin. Caffeic acid alleviates inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes by inhibiting phosphorylation of IκB kinase α/β and IκBα. International Immunopharmacology. 2017;48: 61-6. doi:10.1016/j.intimp.2017.04.025 DOI: https://doi.org/10.1016/j.intimp.2017.04.025

Shrestha A, Hakeem Said I, Grimbs A, Thielen N, Lansing L, Schepker H, Kuhnert N. Determination of hydroxycinnamic acids present in Rhododendron species. Phytochemistry. 2017;144: 216-25. doi: 10.1016/j.phytochem.2017.09.018 DOI: https://doi.org/10.1016/j.phytochem.2017.09.018

Ruiz A, Mardones C, Vergara C, Hermosín-Gutiérrez I, Dominguez E. Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. Journal of Chromatography A. 2013;1281: 38-45. doi:10.1016/j.chroma.2013.01.059 DOI: https://doi.org/10.1016/j.chroma.2013.01.059

Yezerska O, Kalynyuk T, Vronska L. Quntitative determination of hydroxycinnamic acids in chicory. Сhemistry and Chemical Technology. 2013;3: 247-50. doi:10.23939/chcht07.03.247 DOI: https://doi.org/10.23939/chcht07.03.247

Vronska LV, Demyd AYe, Ezhned MA. Development of standardization method of elecampane rhizomes and roots (Inula helenium L.) for the hydroxycinnamic acids content. Pharmaceutical Review. 2016;2: 26-31. doi:10.11603/2312-0967.2016.2.6646

Koval VM, Vronska LV. [Determination of echinacea extract in tablets with zinc aspartic and ascorbic acid and echinacea extract]. Aktualni pytannia farmatsevtychnoi i medychnoi nauky ta praktyky. 2012;2: 83-7. Ukrainian.

Vronska LV, Demyd AYe. [Studies on the standardization of Melissa officinalis herb]. Upravlinnia, economika ta zabezpechennia yakosti v farmatsii. 2014;2(34): 10-15. Ukrainian.

The State Pharmacopoeia of Ukraine: in 3 vol. Kharkiv: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products. Ed.2. [Державна Фармакопея України: в 3 т. / ДП «Український науковий фармакопейний центр якості лікарських засобів». – 2-е вид.] Kharkiv: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products.2014; Ukrainian.

The State Pharmacopoeia of Ukraine : Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products. Ed.2, addition 1. [Державна Фармакопея України / ДП «Український науковий фармакопейний центр якості лікарських засобів». – 2-е вид. – Доповнення 1.] Kharkiv: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products.2016; Ukrainian.

The State Pharmacopoeia of Ukraine: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products. Ed.2, addition 2. [Державна Фармакопея України / ДП «Український науковий фармакопейний центр якості лікарських засобів». – 2-е вид. – Доповнення 2.] Kharkiv: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products.2018; Ukrainian.

The State Pharmacopoeia of Ukraine : Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products. Ed.2, addition 3. [Державна Фармакопея України / ДП «Український науковий фармакопейний центр якості лікарських засобів». – 2-е вид. – Доповнення 3.] Kharkiv: Ukrainian Scientific Pharmacopoeia Center of Quality of Medicinal Products. 2018; Ukrainian.

Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O. Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships Curr. Med. Chem. 2013;20(36): 4436-50. doi:10.2174/09298673113209990141 DOI: https://doi.org/10.2174/09298673113209990141

Furlan CPB, Valle SC, Maróstica Jr MR, Östman E, Björck I, Tovar J. Effect of bilberries, lingonberries and cinnamon on cardiometabolic risk-associated markers following a hypercaloric-hyperlipidic breakfast. Journal of Functional Foods. 2019;60: 103443. doi:10.1016/j.jff.2019.103443 DOI: https://doi.org/10.1016/j.jff.2019.103443

Habanova M, Saraiva JA, Haban M, Schwarzova M, Chlebo P, Predna L, Gažo J, Wyka J. Intake of bilberries (Vaccinium myrtillus L.) reduced risk factors for cardiovascular disease by inducing favorable changes in lipoprotein profiles. Nutrition Research. 2016;36(12): 1415-22. doi:10.1016/j.nutres.2016.11.010 DOI: https://doi.org/10.1016/j.nutres.2016.11.010

Prokop PJ, Lněničková K, Cibiček N, Kosina P, Tománková V, Jourová L, Láníčková T. Effect of bilberry extract (Vaccinium myrtillus L.) on drug-metabolizing enzymes in rats. Food and Chemical Toxicology. 2019;129: 382-90. doi: 10.1016/j.fct.2019.04.051 DOI: https://doi.org/10.1016/j.fct.2019.04.051

Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free radical Biology & Medicine. 1995;19(5): 541-52. doi: 10.1016/0891-5849(95)00052-y DOI: https://doi.org/10.1016/0891-5849(95)00052-Y

Khan FA, Maalik A, Murtaza G. Inhibitory mechanism against oxidative stress of caffeic acid. J Food and Drug analysis. 2016;24: 695-702. doi: 10.1016/j.jfda.2016.05.003 DOI: https://doi.org/10.1016/j.jfda.2016.05.003

Tundis R, Loizzo M R, Menichini F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry. 2010;10: 315-31. doi:10.2174/138955710791331007 DOI: https://doi.org/10.2174/138955710791331007

Colak N, Torun H, Gruz J, Strnad M, Subrtova M, Inceer H, Ayaz FA. Comparison of phenolics and phenolic acid profiles in conjunction with oxygen radical absorbing capacity (ORAC) in berries of Vaccinium arctostaphylos L. and V. myrtillus L. Pol J Food Nutr Sci. 2016;66(2): 85-91. doi: 10.1515/pjfns-2015-0053 DOI: https://doi.org/10.1515/pjfns-2015-0053

Witzell J, Gref R, Näsholm T. Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochemical Systematics and Ecology. 2003;31: 115-27. doi: 10.1016/S0305-1978(02)00141-2 DOI: https://doi.org/10.1016/S0305-1978(02)00141-2

Published

2019-12-31

How to Cite

Vronska, L. V. (2019). CHROMATOGRAPHIC PROFILE OF THE HYDROXYCINNAMIC ACIDS OF BILBERRY SHOOTS DRY EXTRACT. Pharmaceutical Review Farmacevtičnij časopis, (4), 5–18. https://doi.org/10.11603/2312-0967.2019.4.10701

Issue

Section

Phytochemical researches