RATIONALE OF THE NECESSITY OF THE MOLECULAR BIOLOGY STUDY IN MEDICAL UNIVERSITIES

Authors

DOI:

https://doi.org/10.11603/me.2414-5998.2019.4.10861

Keywords:

molecular biology, gene-dependent metabolism reprogramming, higher medical education

Abstract

In medical universities of most countries of the world, for the training of the modern international level doctors, it is mandatory to study the basics of molecular biology for a deeper understanding of the mechanisms of origin and development of pathological processes in the human body as well as to find ways to overcome them, develop new strategies for creating of drugs with higher efficiency and specificity without side effects. This is due primarily to the fact that the regulation of major metabolic processes both in health and various pathologies is mediated by reprogramming of genome functional activity at the level of different cell signaling systems.

Thus, molecular biology provides knowledge of the molecular-genetic basis of homeostasis and the molecular mechanisms of the development of metabolic dysregulations in various pathologies, such as oncology, cardiovascular, endocrine, and others, and indicates possible ways to overcome them and therefore a detailed study of this science is very important for the training of high-level doctors of international level.

References

Vieira, E., Ruano, E.G., Figueroa, A.L., Merino, B., Fernandez-Ruiz, R., Nadal, A., Burris, T.P., Gomis, R., et al. (2014). Altered clock gene expression in obese visceral adipose tissue is associated with metabolic syndrome. PLoS One, 9, e111678. DOI: https://doi.org/10.1371/journal.pone.0111678

Auf, G., Jabouille, A., Guerit, S., Pineau, R., Delugin, M., Bouchecareilh, M., Favereaux, A., et al. (2010). A shift from an angiogenic to invasive phe­notype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proc. Natl. Acad. Sci. U. S. A., 107, 15553-15558. DOI: https://doi.org/10.1073/pnas.0914072107

Avril, T., Vauléon, E., & Chevet, E. (2017). Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis, 6(8), e373. DOI: https://doi.org/10.1038/oncsis.2017.72

Prats-Puig, A., Ortega, F.J., Mercader, J.M., Moreno-Navarrete, J.M., Moreno, M., Bonet, N., Ricart, W., et al. (2013). Changes in circulating microRNAs are associated with childhood obesity. J. Clin. Endocrinol. Metab., 98 (10), E1655-60. DOI: https://doi.org/10.1210/jc.2013-1496

Doultsinos, D., Avril, T., Lhomond, S., Dejeans, N., Guédat, P., Chevet, E. (2017). Control of the unfolded protein response in health and disease. SLAS Discov., 22, 787-800. DOI: https://doi.org/10.1177/2472555217701685

Obacz, J., Avril, T., Le Reste, P.J., Urra, H., Quillien, V., Hetz, C., & Chevet, E. (2017). Endoplasmic reticulum proteostasis in glioblastoma-From molecular mechanisms to therapeutic perspectives. Sci. Signal., 10 (470), pii: eaal2323.

Cnop, M., Toivonen, S., Igoillo-Esteve, M., & Salpea, P. (2017). Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol. Metab., 6, 1024-1039. DOI: https://doi.org/10.1016/j.molmet.2017.06.001

Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., et al. (2019). Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J., 286, 241-278. DOI: https://doi.org/10.1111/febs.14608

Oosting, A., van Vlies, N., Kegler, D., Schipper, L., Abrahamse-Berkeveld, M., Ringler, S., Verkade, H.J. et al. (2014). Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br. J. Nutr., 111, 215-226. DOI: https://doi.org/10.1017/S0007114513002201

Blüher, M., Klöting, N., Wueest, S., Schoenle, E.J., Schön, M.R., Dietrich, A., Fasshauer, M., et al. (2014). Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes. J. Clin. Endo­crinol. Metab., 99, E36-E44.

Giaccia, A., Siim, B.G., & Johnson, R.S. (2003). HIF-1 as a target for drug development. Nat. Rev. Drug Discov., 2, 803-811. DOI: https://doi.org/10.1038/nrd1199

Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., & Kaelin, W.G. Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292, 464-468. DOI: https://doi.org/10.1126/science.1059817

Auf, G., Jabouille, A., Delugin, M., Guerit, S., Pineau, R., North, S., Platonova, N. et al. (2013). High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer, 13, 597. DOI: https://doi.org/10.1186/1471-2407-13-597

Drummond, G.S., Baum, J., Greenberg, M., Lewis, D., & Abraham, N.G. (2019). HO-1 overexpression and underexpression: Clinical implications. Arch. Biochem. Biophys., 673, 108073. DOI: https://doi.org/10.1016/j.abb.2019.108073

Hotamisligil, G.S. (2008). Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. (Lond). 32 (7), S52-S54. DOI: https://doi.org/10.1038/ijo.2008.238

Cockman, M.E., Masson, N., Mole, D.R., Jaakkola, P., Chang, G.W., Clifford, S.C., Maher, E.R., et al. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem., 275, 25733-25741. DOI: https://doi.org/10.1074/jbc.M002740200

Minchenko, A.G., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V.E., Caro, J. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem., 277, 6183-6187. DOI: https://doi.org/10.1074/jbc.M110978200

Minchenko, A., Bauer, T., Salceda, S., Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory Invest., 71, 374-379.

Minchenko, D.O., Danilovskyi, S.V., Kryvdiuk, I.V., Bakalets, T.V., Lypova, N.M., Karbovskyi, L.L., Minchenko, O.H. (2014). Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis., 1, 18-26. DOI: https://doi.org/10.2478/ersc-2014-0001

Logue, S.E., McGrath, E.P., Cleary, P., Greene, S., Mnich, K., Almanza, A., Chevet, E., et al. (2018). Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun., 9 (1), 3267. DOI: https://doi.org/10.1038/s41467-018-05763-8

Minchenko, O.H., Tsymbal, D.O., Moenner, M., Minchenko, D.O., Kovalevska, O.V., & Lypova, N.M. (2015). Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm. Reticul. Stress Dis., 2 (1), 18-29.

Moenner, M., Pluquet, O., Bouchecareilh, M., & Chevet, E. (2007). Integrated endoplasmic reticulum stress responses in cancer. Cancer Res., 67, 10631-10634. DOI: https://doi.org/10.1158/0008-5472.CAN-07-1705

Lee, J., & Ozcan, U. (2014). Unfolded protein res­ponse signaling and metabolic diseases. J. Biol. Chem., 289, 1203-1211. DOI: https://doi.org/10.1074/jbc.R113.534743

Maurel, M., & Chevet, E. (2013). Endoplasmic reticulum stress signaling: the microRNA connection. Am. J. Physiol. Cell. Physiol., 304, C1117-C1126. DOI: https://doi.org/10.1152/ajpcell.00061.2013

McMahon, M., Samali, A., & Chevet, E. (2017). Regulation of the unfolded protein response by noncoding RNA. Am. J. Physiol. Cell. Physiol., 313, C243-C254. DOI: https://doi.org/10.1152/ajpcell.00293.2016

Minchenko, D.O. (2015). Dominant-negative cons­tructs of inositol requiring enzyme-1alpha as an effective way to suppression of tumor growth through the inhibition of cell proliferation and angiogenesis and activation of apoptosis. J. Mod. Med. Chem., 3 (1), 35-43. DOI: https://doi.org/10.12970/2308-8044.2015.03.01.5

Minchenko, O.H., Tsymbal, D.O., & Minchenko, D.O. (2015). IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biology, 4(3), 118. DOI: https://doi.org/10.4172/2168-9431.1000118

Chen, Y.C., Colvin, E.S., Maier, B.F., Mirmira, R.G., & Fueger, P.T. (2013). Mitogen-inducible gene 6 triggers apoptosis and exacerbates ER stress-induced β-cell death. Mol.. Endocrinol., 27, 162-171. DOI: https://doi.org/10.1210/me.2012-1174

Minchenko, O.H., Kubaichuk, K.I., Minchenko, D.O., Kovalevska, O.V., Kulinich, A.O., & Lypova, N.M. (2014). Molecular mechanisms of ERN1-mediated angiogenesis. Int. J. Physiol. Pathophysiol., 5 (1), 1-22. DOI: https://doi.org/10.1615/IntJPhysPathophys.v5.i1.10

Bochkov, V.N., Philippova, M., Oskolkova, O., Kadl, A., Furnkranz, A., Karabeg, E., Breuss, J., et al. (2006). Oxidized phospholipids stimulate angiogenesis via induction of VEGF, IL-8, COX-2 and ADAMTS-1 metalloprotease, implicating a novel role for lipid oxidation in progression and destabilization of atherosclerotic lesions. Circ. Res., 99 (8), 900-908. DOI: https://doi.org/10.1161/01.RES.0000245485.04489.ee

Papaioannou, A., Chevet, E. (2018). Driving cancer tumorigenesis and metastasis through UPR signaling. Curr. Top. Microbiol. Immunol., 414, 159-192.

Pluquet, O., Dejeans, N., & Chevet, E. (2014). Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann. Med., 46 (4), 233-243. DOI: https://doi.org/10.3109/07853890.2013.874664

Orelle, C., Carlson, E.D., Szal, T., Florin, T., Jewett, M.C., & Mankin, A.S. (2015). Protein synthesis by ribosomes with tethered subunits. Nature, 6, 524, 119-124. DOI: https://doi.org/10.1038/nature14862

Reid, D.W., & Nicchitta, C.V. (2015). Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 16, 221-231. DOI: https://doi.org/10.1038/nrm3958

Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B.S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 8, 118. DOI: https://doi.org/10.1186/s13756-019-0559-6

Scheuner, D., & Kaufman, R.J. (2008). The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev., 29, 317-333. DOI: https://doi.org/10.1210/er.2007-0039

Salvadó, L., Palomer, X., Barroso, E., & Vázquez-Carrera, M. (2015). Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab., 26, 438-448. DOI: https://doi.org/10.1016/j.tem.2015.05.007

Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., et. al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271-275. DOI: https://doi.org/10.1038/20459

Iliopoulos, O., Kibel, A., Gray, S., & Kaelin, W.G. Jr. (1995). Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med., 1, 822-826. DOI: https://doi.org/10.1038/nm0895-822

Ohh, M., Park, C.W., Ivan, M., Hoffman, M.A., Kim, T.Y., Huang, L.E., Pavletich, N., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol., 2, 423-427. DOI: https://doi.org/10.1038/35017054

Uechi, T., Tanaka, T., & Kenmochi, N. (2001). A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics, 72, 223-230. DOI: https://doi.org/10.1006/geno.2000.6470

Wang, G.L., & Semenza, G.L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. U. S. A., 90, 4304-4308. DOI: https://doi.org/10.1073/pnas.90.9.4304

Published

2020-02-13

How to Cite

Minchenko, O. H., Minchenko, D. O., & Korda, M. M. (2020). RATIONALE OF THE NECESSITY OF THE MOLECULAR BIOLOGY STUDY IN MEDICAL UNIVERSITIES. Medical Education, (4), 24–33. https://doi.org/10.11603/me.2414-5998.2019.4.10861

Issue

Section

QUALITY IMPROVEMENT IN HIGHER MEDICAL EDUCATION