SOME FEATURES OF THE HUMAN MICROBIOME
DOI:
https://doi.org/10.11603/1681-2727.2024.4.15005Keywords:
microbiome, symbiosis, macroorganism, microorganismAbstract
The article provides examples of using modern methods of human microbiome research, for example transcriptomics, metagenomics, and metabiomics, which are based on decoding the genomes of microorganisms, which make it possible to assess the species composition of the microbiota of the human body certain biotope without isolating pure cultures.
A short historical overview of the human microbiome study and the contribution of national and foreign researchers to the development of knowledge about the microbiome is given.
The functions performed by the human microbiome in the vital activity of the macroorganism and their influence on the efficiency of the work of numerous macroorganism organs and systems of the organs, in particular the immune system, are thoroughly described.
The role of the microbial well-being of the future mother’s body in the formation of the neonatal microbiota and its ability to perform key functions in the baby’s body is shown.
The biosociological significance of microbial symbionts and their connection with the socio-psychological «climate»of human were considered.
The review emphasizes the importance of the stability of the composition of the human microbiome and the factors that can affect it, thereby causing negative effects on the body as a whole. Some features of the microbial landscape of the most important human biotopes are characterized.
The review points out the importance of a stable composition of the human microbiome and the factors that can affect it, thereby causing negative effects on the body. Some features of the microbial landscape of the most important human biotopes are characterized.
This work expands the understanding by specialists of all branches of medicine the knowledge about the composition of the human microbiome, the role of its microorganisms in the physiological functioning the human body and their importance in the formation of pathological states of various localization, indicates the possibility of maintaining the stability of the microbiome in different biotopes and the possibility of their correction by improving the health of the human microbiome.
References
Dekaboruah, E., Suryavanshi, M.V., Chettri, D., & Verma, A.K. (2020). Human microbiome: an academic update on human body site specific surveillance and its possible role. Archives of microbiology, 202, 2147-2167. DOI: https://doi.org/10.1007/s00203-020-01931-x
Shreiner, A.B., Kao, J.Y., & Young, V.B. (2015). The gut microbiome in health and in disease. Current opinion in gastroenterology, 31(1), 69-75. DOI: https://doi.org/10.1097/MOG.0000000000000139
Yankovskyi, D.S., Shirobokov, V.P., Dyment, G.S. (2017). Microbiome: monograph. Kyiv: FIP Veres, 640 p. [in Ukrainian].
Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evolutionary bioinformatics, 12, EBO-S36436. DOI: https://doi.org/10.4137/EBO.S36436
Kinross, J.M., Darzi, A.W., & Nicholson, J.K. (2011). Gut microbiome-host interactions in health and disease. Genome medicine, 3, 1-12.
Lim, Y.W., Schmieder, R., Haynes, M., Willner, D., Furlan, M., Youle, M., ... & Rohwer, F. (2013). Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. Journal of Cystic Fibrosis, 12(2), 154-164. DOI: https://doi.org/10.1016/j.jcf.2012.07.009
Gifford, S.M., Sharma, S., Rinta-Kanto, J.M., & Moran, M.A. (2011). Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. The ISME journal, 5(3), 461-472. DOI: https://doi.org/10.1038/ismej.2010.141
Hayashi, H., Sakamoto, M., & Benno, Y. (2002). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiology and immunology, 46(8), 535-548. DOI: https://doi.org/10.1111/j.1348-0421.2002.tb02731.x
Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M., ... & Huttenhower, C. (2014). Relating the metatranscriptome and metagenome of the human gut. Proceedings of the National Academy of Sciences, 111(22), E2329-E2338. DOI: https://doi.org/10.1073/pnas.1319284111
Gawad, C., Koh, W., & Quake, S.R. (2016). Single-cell genome sequencing: current state of the science. Nature Reviews Genetics, 17(3), 175-188. DOI: https://doi.org/10.1038/nrg.2015.16
Kilian, M., Chapple, I.L.C., Hannig, M., Marsh, P.D., Meuric, V., Pedersen, A.M.L., ... & Zaura, E. (2016). The oral microbiome–an update for oral healthcare professionals. British dental journal, 221(10), 657-666. DOI: https://doi.org/10.1038/sj.bdj.2016.865
Klimniuk, S.I., Volch, I.R., Zagrychuk, O.M., Kravets, N.Ya., Medvid, I.I., Mykhailyshyn, G.M. (2023). Microbiome of the human body: textbook. Ternopil: Osadna Yu. V., 416 p. [in Ukrainian]
Johnson, C.L., & Versalovic, J. (2012). The human microbiome and its potential importance to pediatrics. Pediatrics, 129(5), 950-960. DOI: https://doi.org/10.1542/peds.2011-2736
Dethlefsen, L., McFall-Ngai, M., & Relman, D.A. (2007). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 449(7164), 811-818. DOI: https://doi.org/10.1038/nature06245
Belizário, J. E., & Napolitano, M. (2015). Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Frontiers in microbiology, 6, 1050. DOI: https://doi.org/10.3389/fmicb.2015.01050
Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82. DOI: https://doi.org/10.1016/J.ENG.2017.01.008
Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., & Brown, P.O. (2007). Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. DOI: https://doi.org/10.1371/journal.pbio.0050177
Wang, Y., Wang, B., Wu, J., Jiang, X., Tang, H., & Nielsen, O.H. (2017). Modulation of gut microbiota in pathological states. Engineering, 3(1), 83-89.
Grice, E.A., & Segre, J.A. (2011). The skin microbiome. Nature reviews microbiology, 9(4), 244-253.
Pflughoeft, K.J., & Versalovic, J. (2012). Human microbiome in health and disease. Annual Review of Pathology: Mechanisms of Disease, 7(1), 99-122. DOI: https://doi.org/10.1146/annurev-pathol-011811-132421
Cundell, A.M. (2018). Microbial ecology of the human skin. Microbial ecology, 76(1), 113-120. DOI: https://doi.org/10.1007/s00248-016-0789-6
Grice, E.A., & Segre, J.A. (2011). The skin microbiome. Nat Rev Microbiol. 2011, 244, 10. DOI: https://doi.org/10.1038/nrmicro2537
Grice, E.A., & Segre, J.A. (2012). The human microbiome: our second genome. Annual review of genomics and human genetics, 13(1), 151-170. DOI: https://doi.org/10.1146/annurev-genom-090711-163814
Ibrahim, F., Khan, T., & Pujalte, G.G. (2015). Bacterial skin infections. Primary Care: Clinics in Office Practice, 42(4), 485-499. DOI: https://doi.org/10.1016/j.pop.2015.08.001
Asadi, A., Razavi, S., Talebi, M., & Gholami, M. (2019). A review on anti-adhesion therapies of bacterial diseases. Infection, 47, 13-23. DOI: https://doi.org/10.1007/s15010-018-1222-5
Lamont, R.J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: dynamic communities and host interactions. Nature reviews microbiology, 16(12), 745-759. DOI: https://doi.org/10.1038/s41579-018-0089-x
Zaura, E., Keijser, B.J., Huse, S.M., & Crielaard, W. (2009). Defining the healthy» core microbiome» of oral microbial communities. BMC microbiology, 9, 1-12. DOI: https://doi.org/10.1186/1471-2180-9-259
Zarco, M.F., Vess, T.J., & Ginsburg, G.S. (2012). The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral diseases, 18(2), 109-120. DOI: https://doi.org/10.1111/j.1601-0825.2011.01851.x
Lu, M., Xuan, S., & Wang, Z. (2019). Oral microbiota: A new view of body health. Food Science and Human Wellness, 8(1), 8-15. DOI: https://doi.org/10.1016/j.fshw.2018.12.001
Wade, W.G. (2013). The oral microbiome in health and disease. Pharmacol Res, 69(1), 137-143. DOI: https://doi.org/10.1016/j.phrs.2012.11.006
Kumaraswamy, K.L., & Vidhya, M. (2011). Human papilloma virus and oral infections: an update. Journal of cancer research and therapeutics, 7(2), 120-127. DOI: https://doi.org/10.4103/0973-1482.82915
Wilson, M. (2005). Microbial inhabitants of humans: their ecology and role in health and disease. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511735080
Kelly, B.J., Imai, I., Bittinger, K., Laughlin, A., Fuchs, B.D., Bushman, F.D., & Collman, R.G. (2016). Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome, 4, 1-13. DOI: https://doi.org/10.1186/s40168-016-0151-8
Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., & Huffnagle, G.B. (2016). The microbiome and the respiratory tract. Annual review of physiology, 78(1), 481-504. DOI: https://doi.org/10.1146/annurev-physiol-021115-105238
Man, W.H., de Steenhuijsen Piters, W.A., & Bogaert, D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nature Reviews Microbiology, 15(5), 259-270. DOI: https://doi.org/10.1038/nrmicro.2017.14
Gao, Z., Kang, Y., Yu, J., & Ren, L. (2014). Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genomics, Proteomics and Bioinformatics, 12(3), 144-150. DOI: https://doi.org/10.1016/j.gpb.2014.06.001
Biesbroek, G., Tsivtsivadze, E., Sanders, E.A., Montijn, R., Veenhoven, R.H., Keijser, B.J., & Bogaert, D. (2014). Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. American journal of respiratory and critical care medicine, 190(11), 1283-1292. DOI: https://doi.org/10.1164/rccm.201407-1240OC
Hollister, E.B., Gao, C., & Versalovic, J. (2014). Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology, 146(6), 1449-1458.
Aragon, I.M., Herrera-Imbroda, B., Queipo-Ortuño, M.I., Castillo, E., Del Moral, J.S.G., Gomez-Millan, J., ... & Lara, M.F. (2018). The urinary tract microbiome in health and disease. European urology focus, 4(1), 128-138. DOI: https://doi.org/10.1016/j.euf.2016.11.001
Min, Y.W., & Rhee, P.L. (2015). The role of microbiota on the gut immunology. Clinical therapeutics, 37(5), 968-975. DOI: https://doi.org/10.1016/j.clinthera.2015.03.009
Wang, Y., Wang, B., Wu, J., Jiang, X., Tang, H., & Nielsen, O.H. (2017). Modulation of gut microbiota in pathological states. Engineering, 3(1), 83-89.
Kinross, J.M., von Roon, A.C., Holmes, E., Darzi, A., & Nicholson, J.K. (2008). The human gut microbiome: implications for future health care. Current gastroenterology reports, 10(4), 396-403. DOI: https://doi.org/10.1007/s11894-008-0075-y
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220-230. DOI: https://doi.org/10.1038/nature11550
Shyrobokov, V.P., Yankovskyi, D.S., Dyment, G.S. (2011). Human microbial ecology with color atlas: textbook. 2nd edition, revised and supplemented. Kyiv LLC: Chervona Ruta-Tours., 312 p. [in Ukrainian].
Donaldson, G.P., Lee, S.M., Mazmanian, S.K. (2016). Gut biogeography of the bacterial microbiota. Nat Rev Microbiol., 14(1),20-32. DOI: https://doi.org/10.1038/nrmicro3552
Hollister, E.B., Gao, C., Versalovic, J. (2014). Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology., 146(6), 1449-58. DOI: https://doi.org/10.1053/j.gastro.2014.01.052
Dridi, B., Fardeau, M.L., Ollivier, B., Raoult, D., Drancourt, M. (2012). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol., 62(8), 1902-1907. DOI: https://doi.org/10.1099/ijs.0.033712-0
Chuang, Y.F., Fan, K.C., Su, Y.Y., Wu, M.F., Chiu, Y.L., Liu, Y.C., & Lin, C.C. (2024). Precision probiotics supplement strategy in aging population based on gut microbiome composition. Briefings in Bioinformatics, 25(4), bbae351. DOI: https://doi.org/10.1093/bib/bbae351
Kelesidis, T., Pothoulakis, C. (2012). Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol., 5(2), 111-125. DOI: https://doi.org/10.1177/1756283X11428502
Sidhu, H., Schmidt, M.E., Cornelius, J.G., Thamilselvan, S., Khan, S.R., Hesse, A., Peck, A.B. (1999). Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol., 10(14), 334-340.
Lee, S., Portlock, T., Le Chatelier, E., Garcia-Guevara, F., Clasen, F., Oñate, F.P., ... & Shoaie, S. (2024). Global compositional and functional states of the human gut microbiome in health and disease. Genome research, 34(6), 967-978. DOI: https://doi.org/10.1101/gr.278637.123
Greenblum, S., Turnbaugh, P.J., Borenstein, E. (2012). Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci., 109(2), 594-599. DOI: https://doi.org/10.1073/pnas.1116053109
Kinross, J.M., Darzi, A.W., Nicholson, J.K. (2011). Gut microbiome-host interactions in health and disease. Genome Med., 3(3), 14. DOI: https://doi.org/10.1186/gm228
Wang, Y., Wang, B., Wu, J., Jiang, X., Tang, H., Nielsen, O.H. (2017). Modulation of gut microbiota in pathological states. Engineering, 3(1), 83-89. DOI: https://doi.org/10.1016/J.ENG.2017.01.013
Foxman, B. The epidemiology of urinary tract infection. (2010). Nat Rev Urol., 7(12), 653-660. DOI: https://doi.org/10.1038/nrurol.2010.190
Sheerin, N.S. (2011). Urinary tract infection. Medicine, 39(7), 384-389. DOI: https://doi.org/10.1016/j.mpmed.2011.04.003
Colella, M., Topi, S., Palmirotta, R., D’Agostino, D., Charitos, I.A., Lovero, R., & Santacroce, L. (2023). An overview of the microbiota of the human urinary tract in health and disease: current issues and perspectives. Life, 13(7), 1486. DOI: https://doi.org/10.3390/life13071486
Hetticarachchi, N., Ashbee, H.R., Wilson, J.D. (2010). Prevalence and management of non-albicans vaginal candidiasis. Sex Transm Infect., 86(2), 99-100. DOI: https://doi.org/10.1136/sti.2009.040386
Dhakar, K., Pandey, A. (2016). Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol., 100(6), 2499-2510. DOI: https://doi.org/10.1007/s00253-016-7285-2
Paduch-Jakubczyk, W., & Dubińska, M. (2024). The Role of Vaginal Microbiota in Women’s Health.
Suryavanshi, M.V., Bhute, S.S., Jadhav, S.D., Bhatia, M.S., Gune, R.P., & Shouche, Y.S. (2016). Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific reports, 6(1), 1-15. DOI: https://doi.org/10.1038/srep34712
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 С. І. Климнюк, Л. Б. Романюк

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal Infectious Disease (Infektsiini Khvoroby) allows the author(s) to hold the copyright without registration
Users can use, reuse and build upon the material published in the journal but only for non-commercial purposes
This journal is available through Creative Commons (CC) License BY-NC "Attribution-NonCommercial" 4.0