РОЛЬ МІКРОБІОМУ В ПАТОГЕНЕЗІ ІНФЕКЦІЙНИХ ЗАХВОРЮВАНЬ

Автор(и)

DOI:

https://doi.org/10.11603/1681-2727.2024.4.14688

Ключові слова:

інфекційні захворювання, мікро­біом, біоценоз, дисбіозні мікроорганізми, мікробіомні порушення, імунітет, патогени, мікробіомна терапія, пробіотики

Анотація

Огляд присвячений аналізу сучасних уявлень про природну мікробіоту людини (мікробіом) як ключову детермінанту, відповідальну за підтримку здоров’я або розвиток широкого спектру захворювань, включаючи інфекційні хвороби.

Останніми роками отримано безліч переконливих доказів величезного потенціалу дії мікробіому на різні процеси функціонування організму людини. Ґрунтуючись на цих даних, фахівці розглядають мікробіом як додатковий орган людини, який, активно беручи участь у травленні, управлінні метаболічними процесами, підтримці цілісності епітеліального бар’єру, розвитку і зміцненні імунної системи і низки інших фізіологічних функцій, оптимізує умови для нормальної життєдіяльності організму людини загалом. В огляді приділена увага участі симбіонтних мікроорганізмів у захисті організму людини від інфекцій. Представлено сучасний погляд на стратегію взаємодії мікробіому зі збудниками інфекційних хвороб. Здійснений аналіз результатів досліджень, що стосуються доцільності використання пробіотиків та інших засобів оздоровлення мікробіому в лікуванні хворих з інфекційною патологією.

Біографії авторів

В. П. Широбоков, Національний медичний університет ім. О. О. Богомольця

д. мед. наук, професор, академік НАН України, академік НАМН України, завідувач кафедри мікробіології та паразитології з основами імунології

Г. С. Димент, Науково-виробнича компанія «О.Д. Пролісок»

канд. техн. наук, директорка наукового центру НВК «О.Д. Пролісок»

Посилання

Yankovskiy, D., Shyrobokov, V., & Dyment, G. (2019). The role of microbiome in the formation of child health (literature review). Suchasna pediatriya. Ukrayina - Modern pediatrics. Ukraine, 5(101), 64-88 [in Ukrainian].

Koch, R. (1893). Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose. Zeitschrift für Hygiene und Infektionskrankheiten, 14(1), 319-338 [in German].

Walker, L., LeVine, H., & Jucker, M. (2006). Koch’s postulates and infectious proteins. Acta neuropathologica, 112, 1-4.

Dhar, D., & Mohanty, A. (2020). Gut microbiota and Covid-19-possible link and implications. Virus research, 285, 198018.

Shyrobokov, V. P., Yankovskyy, D. S., Dyment, G. S. (2011). The human microbial ecological system: a modern concept. Proceedings of the scientific and practical conference «Microbial ecology of people. Modern strategies for the selection of probiotics». Kyiv, 2-15 [in Russian].

Yankovskyy, D. S., Shyrobokov, V. P., Dyment, G. S. (2011). The integral role of symbiotic microflora in human physiology. Kyiv: Chervona Ruta-Turs, 169 p. [in Russian].

Leite, G. G. V. R., & Damasceno, C. A. V. (2021). The role of probiotics as gastrointestinal infections treatment and prophylaxis: A review. Medical Science and Discovery, 8(9), 498-504.

Li, C., Peng, K., Xiao, S., Long, Y., & Yu, Q. (2023). The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discovery, 9(1), 361.

Iqbal, Z., Ahmed, S., Tabassum, N., Bhattacharya, R., & Bose, D. (2021). Role of probiotics in prevention and treatment of enteric infections: A comprehensive review. Biotech, 11(5), 242.

Maciel-Fiuza, M.F., Muller, G.C., Campos, D.M.S., do Socorro Silva Costa, P., Peruzzo, J., Bonamigo, R.R., ... & Vianna, F.S.L. (2023). Role of gut microbiota in infectious and inflammatory diseases. Frontiers in microbiology, 14, 1098386.

Shyrobokov, V.P., Yankovskyy, D.S., Dyment, G.S. (2021). The role of mycobiome in the report of oncological pathology. Zhurnal NANU – Journal of NASU, 11, 24-42 [in Ukrainian].

Kaur, H., & Ali, S.A. (2022). Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food & Function, 13(14), 7423-7447.

Zhang, L., Liu, F., Xue, J., Lee, S.A., Liu, L., & Riordan, S.M. (2022). Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms. Frontiers in Microbiology, 13, 801892.

Strugnell, R.A. (2022). When secretion turns into excretion – the different roles of IgA. Frontiers in Immunology, 13, 1076312.

Yankovsky, D.C., & Dyment, G.S. (2008). Microflora and human health. Кyiv: Ltd.“Chervona Ruta–Turs” [in Ukrainian].

Silva-García, O., Valdez-Alarcón, J.J., & Baizabal-Aguirre, V.M. (2019). Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Frontiers in immunology, 10, 2135.

Lee, C.C., Feng, Y., Yeh, Y.M., Lien, R., Chen, C.L., Zhou, Y.L., & Chiu, C.H. (2021). Gut dysbiosis, bacterial colonization and translocation, and neonatal sepsis in very-low-birth-weight preterm infants. Frontiers in Microbiology, 12, 746111.

Shi, M., Zong, X., Hur, J., Birmann, B. M., Martinez-Maza, O., Epeldegui, M., ... & Cao, Y. (2023). Circulating markers of microbial translocation and host response to bacteria with risk of colorectal cancer: a prospective, nested case-control study in men. EBioMedicine, 91.

Ding, S.Z., Du, Y.Q., Lu, H., Wang, W.H., Cheng, H., Chen, S.Y., ... & Li, Z.S. (2022). Chinese consensus report on family-based Helicobacter pylori infection control and management (2021 edition). Gut, 71(2), 238-253.

Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight junctions as a key for pathogens invasion in intestinal epithelial cells. International journal of molecular sciences, 22(5), 2506.

Green, K.Y., Kaufman, S.S., Nagata, B.M., Chaimongkol, N., Kim, D.Y., Levenson, E.A., ... & Sosnovtsev, S.V. (2020). Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nature communications, 11(1), 2759.

Palit, P., Das, R., Haque, M.A., Nuzhat, S., Khan, S.S., Siddiqua, T.J., ... & Ahmed, T. (2022). Risk factors for enterotoxigenic Bacteroides fragilis infection and association with environmental enteric dysfunction and linear growth in children: results from the MAL-ED study. The American Journal of Tropical Medicine and Hygiene, 106(3), 915.

Pazhoohan, M., Sadeghi, F., Moghadami, M., Soltanmoradi, H., & Davoodabadi, A. (2020). Antimicrobial and antiadhesive effects of Lactobacillus isolates of healthy human gut origin on Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC). Microbial pathogenesis, 148, 104271.

Goodman, C., Keating, G., Georgousopoulou, E., Hespe, C., & Levett, K. (2021). Probiotics for the prevention of antibiotic-associated diarrhoea: a systematic review and meta-analysis. BMJ open, 11(8), e043054.

Johnston, B.C., Ma, S.S., Goldenberg, J.Z., Thorlund, K., Vandvik, P.O., Loeb, M., & Guyatt, G.H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888.

Zhang, L., Zeng, X., Guo, D., Zou, Y., Gan, H., & Huang, X. (2022). Early use of probiotics might prevent antibiotic-associated diarrhea in elderly (>65 years): a systematic review and meta-analysis. BMC geriatrics, 22(1), 562.

Hempel, S., Newberry, S.J., Maher, A.R., Wang, Z., Miles, J.N., Shanman, R., ... & Shekelle, P.G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. Jama, 307(18), 1959-1969.

Videlock, E.J., & Cremonini, F. (2012). Meta-analysis: probiotics in antibiotic-associated diarrhoea. Alimentary pharmacology & therapeutics, 35(12), 1355-1369.

Johnston, B.C., Goldenberg, J.Z., Vandvik, P.O., Sun, X., & Guyatt, G.H. (2011). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews, 11.

Łukasik, J., Dierikx, T., Besseling-van der Vaart, I., de Meij, T., Szajewska, H., van der Schoor, S.R., ... & Multispecies Probiotic in AAD Study Group. (2022). Multispecies probiotic for the prevention of antibiotic-associated diarrhea in children: a randomized clinical trial. JAMA pediatrics, 176(9), 860-866.

Tegegne, B.A., & Kebede, B. (2022). Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon, 8(6).

Ekmekciu, I., Fiebiger, U., Stingl, K., Bereswill, S., & Heimesaat, M.M. (2017). Amelioration of intestinal and systemic sequelae of murine Campylobacter jejuni infection by probiotic VSL# 3 treatment. Gut Pathogens, 9, 1-13.

Lee, Y.K., Puong, K.Y., Ouwehand, A.C., & Salminen, S. (2003). Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. Journal of medical microbiology, 52(10), 925-930.

Hayashi, A., Sato, T., Kamada, N., Mikami, Y., Matsuoka, K., Hisamatsu, T., ... & Kanai, T. (2013). A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell host & microbe, 13(6),

-722.

Kiousi, D.E., Efstathiou, C., Tzampazlis, V., Plessas, S., Panopoulou, M., Koffa, M., & Galanis, A. (2023). Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Frontiers in cellular and infection microbiology, 13, 1127256.

Hong, Q., Wang, J., Zhang, H., Liu, X., & Liu, Z. (2023). Study of the effect of Lactobacillus crispatus FSCDJY67L3 on Helicobacter Pylori eradication: a double-blind randomized controlled clinical trial. Frontiers in Immunology, 14, 1265995.

Ekmekciu, I., Fiebiger, U., Stingl, K., Bereswill, S., & Heimesaat, M.M. (2017). Amelioration of intestinal and systemic sequelae of murine Campylobacter jejuni infection by probiotic VSL# 3 treatment. Gut Pathogens, 9, 1-13.

Divyashree, S., Shruthi, B., Vanitha, P.R., & Sreenivasa, M.Y. (2023). Probiotics and their postbiotics for the control of opportunistic fungal pathogens: a review. Biotechnology Reports, 38, e00800.

Resta–Lenert, S., & Barrett, K.E. (2006). Probiotics and commensals reverse TNF-α– and IFN-γ–induced dysfunction in human intestinal epithelial cells. Gastroenterology, 130(3), 731-746.

Ewaschuk, J.B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., ... & Madsen, K.L. (2008). Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. American journal of physiology-gastrointestinal and liver physiology, 295(5), G1025-G1034.

Estévez, J., & Martínez, V. (2023). The local activation of toll-like receptor 7 (TLR7) modulates colonic epithelial barrier function in rats. International journal of molecular sciences, 24(2), 1254.

Gibson, D.L., Ma, C., Rosenberger, C.M., Bergstrom, K.S., Valdez, Y., Huang, J.T., ... & Vallance, B.A. (2008). Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cellular microbiology, 10(2), 388-403.

Sun, Y., Wang, X., Li, L., Zhong, C., Zhang, Y., Yang, X., ... & Yang, C. (2024). The role of gut microbiota in intestinal disease: from an oxidative stress perspective. Frontiers in Microbiology, 15, 1328324.

Preidis, G.A., & Versalovic, J. (2009). Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology, 136(6), 2015-2031.

Claes, I.J.J., Lebeer, S., Shen, C., Verhoeven, T.L.A., Dilissen, E., De Hertogh, G., ... & De Keersmaecker, S. (2010). Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clinical & Experimental Immunology, 162(2), 306-314.

LeBlanc, J.G., Matar, C., Valdez, J.C., LeBlanc, J., & Perdigon, G. (2002). Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science, 85(11), 2733-2742.

Castillo, N.A., Perdigón, G., & de Moreno de LeBlanc, A. (2011). Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC microbiology, 11, 1-12.

Ghadimi, D., Vrese, M.D., Heller, K.J., & Schrezenmeir, J. (2010). Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells. Inflammatory bowel diseases, 16(3), 410-427.

Rimoldi, M., Chieppa, M., Larghi, P., Vulcano, M., Allavena, P., & Rescigno, M. (2005). Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood, 106(8), 2818-2826.

Jeon, S. G., Kayama, H., Ueda, Y., Takahashi, T., Asahara, T., Tsuji, H., ... & Takeda, K. (2012). Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS pathogens, 8(5), e1002714.

Shida, K., Suzuki, T., Kiyoshima-Shibata, J., Shimada, S.I., & Nanno, M. (2006). Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clinical and Vaccine Immunology, 13(9), 997-1003.

Takeda, S., Takeshita, M., Kikuchi, Y., Dashnyam, B., Kawahara, S., Yoshida, H., ... & Kurokawa, M. (2011). Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. International immunopharmacology, 11(12), 1976-1983.

Evrard, B., Coudeyras, S., Dosgilbert, A., Charbonnel, N., Alamé, J., Tridon, A., & Forestier, C. (2011). Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLos one, 6(4), e18735.

Zelaya, H., Alvarez, S., Kitazawa, H., & Villena, J. (2016). Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Frontiers in immunology, 7, 633.

Yasui, H., Kiyoshima, J., Hori, T., & Shida, K. (1999). Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064. Clinical Diagnostic Laboratory Immunology, 6(2), 186-192.

Kobayashi, N., Saito, T., Uematsu, T., Kishi, K., Toba, M., Kohda, N., & Suzuki, T. (2011). Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. International immunopharmacology, 11(2), 199-203.

Waki, N., Yajima, N., Suganuma, H., Buddle, B.M., Luo, D., Heiser, A., & Zheng, T. (2014). Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Letters in Applied Microbiology, 58(1), 87-93.

Kawahara, T., Takahashi, T., Oishi, K., Tanaka, H., Masuda, M., Takahashi, S., ... & Suzuki, T. (2015). Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiology and immunology, 59(1), 1-12.

Harata, G., He, F., Hiruta, N., Kawase, M., Kubota, A., Hiramatsu, M., & Yausi, H. (2010). Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Letters in applied microbiology, 50(6), 597-602.

Hori, T., Kiyoshima, J., Shida, K., & Yasui, H. (2001). Effect of intranasal administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice. Clinical Diagnostic Laboratory Immunology, 8(3), 593-597.

Nakayama, Y., Moriya, T., Sakai, F., Ikeda, N., Shiozaki, T., Hosoya, T., ... & Miyazaki, T. (2014). Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Scientific reports, 4(1), 4638.

Zelaya, H., Tsukida, K., Chiba, E., Marranzino, G., Alvarez, S., Kitazawa, H., ... & Villena, J. (2014). Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation–coagulation interactions. International immunopharmacology, 19(1), 161-173.

Zelaya, H., Tada, A., Vizoso-Pinto, M.G., Salva, S., Kanmani, P., Agüero, G., ... & Villena, J. (2015). Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation–coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflammation Research, 64, 589-602.

Zelaya, H., Alvarez, S., Kitazawa, H., & Villena, J. (2016). Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Frontiers in immunology, 7, 633.

Wenner, M. (2009). A cultured response to HIV: in recent years, research has continued to demonstrate that HIV wreaks terrible havoc in the gut. A few scientists believe that probiotic yogurt might help to counter some of the virus’s devastating effects on the intestine. Melinda Wenner reports on a pilot project that is helping a Tanzanian community make its own probiotic yogurt for HIV-infected locals and empowering women in the process. Nature Medicine, 15(6),

-598.

Forsyth, C.B., Shannon, K.M., Kordower, J.H., Voigt, R.M., Shaikh, M., Jaglin, J.A., ... & Keshavarzian, A. (2011). Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PloS one, 6(12), e28032.

Luyer, M.D., Buurman, W.A., Hadfoune, M.H., Speelmans, G., Knol, J., Jacobs, J.A., ... & Greve, J.W.M. (2005). Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infection and Immunity, 73(6), 3686-3692.

Johnson, H., & Yu, J. (2022). Current and emerging therapies in pediatric atopic dermatitis. Dermatology and Therapy, 12(12), 2691-2703.

Iwabuchi, N., Takahashi, N., Xiao, J.Z., Yonezawa, S., Yaeshima, T., Iwatsuki, K., & Hachimura, S. (2009). Suppressive effects of Bifidobacterium longum on the production of Th2-attracting chemokines induced with T cell–antigen-presenting cell interactions. FEMS Immunology & Medical Microbiology, 55(3), 324-334.

Hummelen, R., Changalucha, J., Butamanya, N.L., Cook, A., Habbema, J.D.F., & Reid, G. (2010). Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 to prevent or cure bacterial vaginosis among women with HIV. International Journal of Gynecology & Obstetrics, 111(3), 245-248.

Hemsworth, J.C., Hekmat, S., & Reid, G. (2012). Micronutrient supplemented probiotic yogurt for HIV-infected adults taking HAART in London, Canada. Gut microbes, 3(5), 414-419.

Hummelen, R., Changalucha, J., Butamanya, N.L., Koyama, T.E., Cook, A., Habbema, J.D.F., & Reid, G. (2011). Effect of 25 weeks probiotic supplementation on immune function of HIV patients. Gut microbes, 2(2), 80-85.

McMillan, A., Dell, M., Zellar, M.P., Cribby, S., Martz, S., Hong, E., ... & Reid, G. (2011). Disruption of urogenital biofilms by lactobacilli. Colloids and Surfaces B: Biointerfaces, 86(1), 58-64.

Alimena, S., Davis, J., Fichorova, R. N., & Feldman, S. (2022). The vaginal microbiome: A complex milieu affecting risk of human papillomavirus persistence and cervical cancer. Current Problems in Cancer, 46(4), 100877.

Verhoeven, V., Renard, N., Makar, A., Van Royen, P., Bogers, J.P., Lardon, F., ... & Baay, M. (2013). Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. European journal of cancer prevention, 22(1), 46-51.

Rowan-Nash, A.D., Korry, B.J., Mylonakis, E., & Belenky, P. (2019). Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews, 83(1), 10-1128.

Elekhnawy, E., & Negm, W.A. (2022). The potential application of probiotics for the prevention and treatment of COVID-19. Egyptian Journal of Medical Human Genetics, 23(1), 36.

Sohail, A., Cheema, H.A., Mithani, M.S., Shahid, A., Nawaz, A., Hermis, A.H., ... & Ahmad, S. (2023). Probiotics for the prevention and treatment of COVID-19: a rapid systematic review and meta-analysis. Frontiers in Nutrition, 10, 1274122.

##submission.downloads##

Опубліковано

2024-12-17

Як цитувати

Широбоков, В. П., & Димент, Г. С. (2024). РОЛЬ МІКРОБІОМУ В ПАТОГЕНЕЗІ ІНФЕКЦІЙНИХ ЗАХВОРЮВАНЬ. Інфекційні хвороби, (4), 19–32. https://doi.org/10.11603/1681-2727.2024.4.14688

Номер

Розділ

Огляди та лекції