АКАРИЦИДИ ТА ЇХ ЗАСТОСУВАННЯ (ЧАСТИНА 2)

Автор(и)

  • М. А. Андрейчин Тернопільський національний медичний університет ім. І. Я. Горбачевського
  • С. І. Климнюк Тернопільський національний медичний університет ім. І. Я. Горбачевського https://orcid.org/0000-0002-1308-3250
  • Л. Б. Романюк Тернопільський національний медичний університет ім. І. Я. Горбачевського

DOI:

https://doi.org/10.11603/1681-2727.2023.3.14209

Ключові слова:

кліщі, кліщові інфекції, акарицидні препарати, резистентність до акарицидів

Анотація

Кліщові інфекції набувають все більшого поширення. Вони складають проблему не тільки в медицині людей, але й ветеринарії та сільському господарстві. Водночас боротьба з кліщами, які служать резервуаром і переносником збудників багатьох хвороб людей і тварин, далека від вирішення. Метою цього огляду літератури було проаналізувати сучасні досягнення у створенні та використанні акарицидних препаратів, що досі в Україні не знайшло достатнього висвітлення.

У статті наведено класифікації акарицидних препаратів, які використовуються, за дією на кліщів на різних стадіях розвитку, хімічним складом, механізмом згубної дії та іншими критеріями. Подана характеристика основних акарицидів, що належать до відповідних хімічних груп, та їх дієвість щодо кліщів певних родів. Розглянуто можливий шкідливий вплив цих сполук на людину, тварин і довкілля. Узагальнено світовий досвід використання окремих препаратів у медичній та ветеринарній галузях, низку практичних рекомендацій, спрямованих на досягнення максимального акарицидного ефекту. Детально обговорено проблему резистентності кліщів до акарицидів, її причини і способи попередження та подолання. Стисло розглянуто альтернативні методи боротьби з кліщами. На основі даних літератури складено практичні поради щодо раціонального використання сучасних акарицидних засобів.

Біографії авторів

М. А. Андрейчин, Тернопільський національний медичний університет ім. І. Я. Горбачевського

академік НАМН України, д. мед. наук, професор, завідувач кафедри інфекційних хвороб з епідеміологією, шкірними та венеричними хворобами Тернопільського національного медичного університету імені І. Я. Горбачевського

С. І. Климнюк, Тернопільський національний медичний університет ім. І. Я. Горбачевського

д. мед. наук, професор, завідувач кафедри мікробіології, вірусології та імунології Тернопільського національного медичного університету імені І. Я. Горбачевського

Л. Б. Романюк, Тернопільський національний медичний університет ім. І. Я. Горбачевського

канд. мед. наук, доцентка кафедри мікробіології, вірусології та та імунології Тернопільського національного медичного університету імені І. Я. Горбачевського

Посилання

L’Hostis, M., & Seegers, H. (2002). Tick-borne parasitic diseases in cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Veterinary Research, 33(5), 599-611. DOI: https://doi.org/10.1051/vetres:2002041

Jaiswal, M., Varshney, R., Saini, K., Nazeer, M., & Kumar, P. (2019). Successful therapeutic management of concurrent infection of Babesia and Theileria in cattle. The Pharma Innovation Journal, 8(6), 368-370.

Wikel, S. K. (2018). Ticks and tick-borne infections: complex ecology, agents, and host interactions. Veterinary Sciences, 5(2), 60. DOI: https://doi.org/10.3390/vetsci5020060

Bock, R., Jackson, L., De Vos, A., & Jorgensen, W. (2004). Babesiosis of cattle. Parasitology, 129(S1), S247-S269. DOI: https://doi.org/10.1017/S0031182004005190

Dumler, J. S., Barbet, A. F., Bekker, C. P., Dasch, G. A., Palmer, G. H., Ray, S. C., ... & Rurangirwa, F. R. (2001). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and’HGE agent’as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2145-2165. DOI: https://doi.org/10.1099/00207713-51-6-2145

Telford 3rd, S. R., Dawson, J. E., Katavolos, P., Warner, C. K., Kolbert, C. P., & Persing, D. H. (1996). Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proceedings of the National Academy of Sciences, 93(12), 6209-6214. DOI: https://doi.org/10.1073/pnas.93.12.6209

Rar, V., & Golovljova, I. (2011). Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution, 11(8), 1842-1861. DOI: https://doi.org/10.1016/j.meegid.2011.09.019

Jongejan, F. R. A. N. S., & Uilenberg, G. (1994). Ticks and control methods. Revue scientifique et technique (International Office of Epizootics), 13(4), 1201-1226.

Jongejan, F. R. A. N. S., & Uilenberg, G. (1994). Ticks and control methods. Revue scientifique et technique (International Office of Epizootics), 13(4), 1201-1226. DOI: https://doi.org/10.20506/rst.13.4.818

FAO (1987). Food and Agriculture Organization of the United Nations. Control de las Garrapatas y de las Enfermedades que Transmiten: Manual Práctico de Campo FAO. 1:5-20.

FAO, F. D. (2009). Food and Agriculture Organization of the United Nations, Rome (2004).

Laerte GrisiRomário Cerqueira LeiteJoão Ricardo de Souza MartinsAntonio Thadeu Medeiros de BarrosRenato AndreottiPaulo Henrique Duarte CançadoAdalberto Angel Pérez de LeónJairo Barros PereiraHumberto Silva Villela. (2014). Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 23(2). DOI: https://doi.org/10.1590/S1984-29612014042

Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Villela, H. S., Torres-Acosta, J. F. D. J., Fragoso Sánchez, H., ... & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista mexicana de ciencias pecuarias, 8(1), 61-74. DOI: https://doi.org/10.22319/rmcp.v8i1.4305

Mcduffie, W. C., Eddy, G. W., Clark, J. C., & Husman, C. N. (1950). Field Studies with Insecticides to control the Lone Star Tick in Texas. Journal of Economic Entomology, 43(4), 520-27. DOI: https://doi.org/10.1093/jee/43.4.520

Mount, G. A., Hirst, J. M., McWilliams, J. G., Lofgren, C. S., & White, S. A. (1968). Insecticides for control of the lone star tick tested in the laboratory and as high-and ultra-low-volume sprays in wooded areas. Journal of economic entomology, 61(4), 1005-1007. DOI: https://doi.org/10.1093/jee/61.4.1005

Solberg, V. B., Neidhardt, K., Sardelis, M. R., Hoffmann, F. J., Stevenson, R., Boobar, L. R., & Harlan, H. J. (1992). Field evaluation of two formulations of cyfluthrin for control of Ixodes dammini and Amblyomma americanum (Acari: Ixodidae). Journal of medical entomology, 29(4), 634-638. DOI: https://doi.org/10.1093/jmedent/29.4.634

Schulze, T. L., Jordan, R. A., & Hung, R. W. (2000). Effects of granular carbaryl application on sympatric populations of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. Journal of medical entomology, 37(1), 121-125. DOI: https://doi.org/10.1603/0022-2585-37.1.121

Eisen, L., & Dolan, M. C. (2016). Evidence for personal protective measures to reduce human contact with blacklegged ticks and for environmentally based control methods to suppress host-seeking blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. Journal of medical entomology, 53(5), 1063-1092. DOI: https://doi.org/10.1093/jme/tjw103

Eisen, R. J., & Eisen, L. (2018). The blacklegged tick, Ixodes scapularis: an increasing public health concern. Trends in parasitology, 34(4), 295-309. DOI: https://doi.org/10.1016/j.pt.2017.12.006

Vudriko, P., Okwee-Acai, J., Tayebwa, D. S., Byaruhanga, J., Kakooza, S., Wampande, E., ... & Suzuki, H. (2016). Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasites & vectors, 9(1), 1-13. DOI: https://doi.org/10.1186/s13071-015-1278-3

Davey, R. B., Miller, J. A., George, J. E., & Miller, R. J. (2005). Therapeutic and persistent efficacy of a single injection treatment of ivermectin and moxidectin against Boophilus microplus (Acari: Ixodidae) on infested cattle. Experimental & applied acarology, 35, 117-129. DOI: https://doi.org/10.1007/s10493-004-2046-9

Davey, R. B., & George, J. E. (1999). Efficacy of coumaphos applied as a dip for control of an organophosphorus-resistant strain of Boophilus microplus (Acari: Ixodidae) on cattle. Journal of economic entomology, 92(6), 1384-1391. DOI: https://doi.org/10.1093/jee/92.6.1384

Mavale, M. S., Geevarghese, G., Ghodke, Y. S., Fulmali, P. V., Singh, A., & Mishra, A. C. (2005). Vertical and venereal transmission of Chandipura virus (Rhabdoviridae) by Aedes aegypti (Diptera: Culicidae). Journal of medical entomology, 42(5), 909-911. DOI: https://doi.org/10.1093/jmedent/42.5.909

Showler, A. T., Osbrink, W. L., Munoz, E., Caesar, R. M., & Abrigo, V. (2019). Lethal effects of silica gel-based CimeXa and kaolin-based Surround dusts against ixodid (Acari: Ixodidae) eggs, larvae, and nymphs. Journal of medical entomology, 56(1), 215-221. DOI: https://doi.org/10.1093/jme/tjy152

Showler, A. T., & Harlien, J. L. (2020). Effects of silica-based CimeXa and Drione dusts against lone star tick (Ixodida: Ixodidae) on cattle. Journal of medical entomology, 57(2), 485-492. DOI: https://doi.org/10.1093/jme/tjz180

Showler, A. T., Flores, N., Caesar, R. M., Mitchel, R. D., & Perez De León, A. A. (2020). Lethal effects of a commercial diatomaceous earth dust product on Amblyomma americanum (Ixodida: Ixodidae) larvae and nymphs. Journal of medical entomology, 57(5), 1575-1581. DOI: https://doi.org/10.1093/jme/tjaa082

Showler, A. T., Dorsey, B. N., & Caesar, R. M. (2020). Lethal effects of a silica gel+ thyme oil (EcoVia) dust and aqueous suspensions on Amblyomma americanum (Ixodida: Ixodidae) larvae and nymphs. Journal of medical entomology, 57(5), 1516-1524. DOI: https://doi.org/10.1093/jme/tjaa054

Deblinger, R. D., & Rimmer, D. W. (1991). Efficacy of a permethrin-based acaricide to reduce the abundance of Ixodes dammini (Acari: Ixodidae). Journal of medical entomology, 28(5), 708-711. DOI: https://doi.org/10.1093/jmedent/28.5.708

Nagagi, Y. P., Kimaro, S. G. and Temba, V. (2020). Practical application and the possible emergence of tick resistance to commonly used acaricides in various districts of Tanzania, Livestock Research for Rural Development. 32, 8.

Hinckley, A. F., Meek, J. I., Ray, J. A., Niesobecki, S. A., Connally, N. P., Feldman, K. A., ... & Mead, P. S. (2016). Effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. The Journal of infectious diseases, 214(2), 182-188. DOI: https://doi.org/10.1093/infdis/jiv775

Curran, K. L., Fish, D., & Piesman, J. (1993). Reduction of nymphal Ixodes dammini (Acari: Ixodidae) in a residential suburban landscape by area application of insecticides. Journal of medical entomology, 30(1), 107-113.

Stafford III, K. C. (1991). Effectiveness of carbaryl applications for the control of Ixodes dammini (Acari: Ixodidae) nymphs in an endemic residential area. Journal of medical entomology, 28(1), 32-36.

Schulze, T. L., Jordan, R. A., Hung, R. W., Taylor, R. C., Markowski, D., & Chomsky, M. S. (2001). Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. Journal of medical entomology, 38(2), 344-346. DOI: https://doi.org/10.1603/0022-2585-38.2.344

Mead, P., Hinckley, A., Hook, S., & Beard, C. B. (2015). TickNET—a collaborative public health approach to tickborne disease surveillance and research. Emerging Infectious Diseases, 21(9), 1574. DOI: https://doi.org/10.3201/eid2109.150301

Ogden, N. H., Lindsay, L. R., Beauchamp, G., Charron, D., Maarouf, A., O’callaghan, C. J., ... & Barker, I. K. (2004). Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. Journal of medical entomology, 41(4), 622-633. DOI: https://doi.org/10.1603/0022-2585-41.4.622

Mather, T. N., Nicholson, M. C., Donnelly, E. F., & Matyas, B. T. (1996). Entomologic index for human risk of Lyme disease. American Journal of Epidemiology, 144(11), 1066-1069. DOI: https://doi.org/10.1093/oxfordjournals.aje.a008879

Feldman, K. A., Connally, N. P., Hojgaard, A., Jones, E. H., White, J. L., & Hinckley, A. F. (2015). Abundance and infection rates of Ixodes scapularis nymphs collected from residential properties in Lyme disease-endemic areas of Connecticut, Maryland, and New York. Journal of vector ecology: journal of the Society for Vector Ecology, 40(1), 198. DOI: https://doi.org/10.1111/jvec.12153

Curran, K. L., Fish, D., & Piesman, J. (1993). Reduction of nymphal Ixodes dammini (Acari: Ixodidae) in a residential suburban landscape by area application of insecticides. Journal of medical entomology, 30(1), 107-113.

Wilson, A. L., Boelaert, M., Kleinschmidt, I., Pinder, M., Scott, T. W., Tusting, L. S., & Lindsay, S. W. (2015). Evidence-based vector control? Improving the quality of vector control trials. Trends in parasitology, 31(8), 380-390. DOI: https://doi.org/10.1016/j.pt.2015.04.015

Rand, P. W., Lacombe, E. H., Elias, S. P., Lubelczyk, C. B., Amand, T. S., & Smith, R. P. (2010). Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. Journal of medical entomology, 47(4), 695-698. DOI: https://doi.org/10.1093/jmedent/47.4.695

Elias, S. P., Lubelczyk, C. B., Rand, P. W., Staples, J. K., St. Amand, T. W., Stubbs, C. S., ... & Smith Jr, R. P. (2013). Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. Journal of medical entomology, 50(1), 126-136. DOI: https://doi.org/10.1603/ME12124

Stafford III, K. C. (1991). Effectiveness of carbaryl applications for the control of Ixodes dammini (Acari: Ixodidae) nymphs in an endemic residential area. Journal of medical entomology, 28(1), 32-36. DOI: https://doi.org/10.1093/jmedent/28.1.32

Roma, G. C., de Oliveira, P. R., Pizano, M. A., & Mathias, M. I. C. (2009). Determination of LC50 of permethrin acaricide in semi-engorged females of the tick Rhipicephalus sanguineus (Latreille, 1806)(Acari: Ixodidae). Experimental Parasitology, 123(3), 269-272. DOI: https://doi.org/10.1016/j.exppara.2009.08.001

Curran, K. L., Fish, D., & Piesman, J. (1993). Reduction of nymphal Ixodes dammini (Acari: Ixodidae) in a residential suburban landscape by area application of insecticides. Journal of medical entomology, 30(1), 107-113. DOI: https://doi.org/10.1093/jmedent/30.1.107

De Meneghi, D., Stachurski, F., & Adakal, H. (2016). Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Frontiers in public health, 4, 239. DOI: https://doi.org/10.3389/fpubh.2016.00239

Pegram, R. G., Tatchell, R. J., De Castro, J. J., Chizyuka, H. G. B., Creek, M. J., McCosker, P. J., ... & Nigarura, G. (1993). Tick control: new concepts. World Anim Rev, 74(75), 2-11.

Willadsen, P. (2006). Tick control: thoughts on a research agenda. Veterinary parasitology, 138(1-2), 161-168. DOI: https://doi.org/10.1016/j.vetpar.2006.01.050

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R., & Dermauw, W. (2015). The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide biochemistry and physiology, 121, 12-21. DOI: https://doi.org/10.1016/j.pestbp.2014.12.009

Hiragaki, S., Kobayashi, T., Ochiai, N., Toshima, K., Dekeyser, M. A., Matsuda, K., & Takeda, M. (2012). A novel action of highly specific acaricide; bifenazate as a synergist for a GABA-gated chloride channel of Tetranychus urticae [Acari: Tetranychidae]. Neurotoxicology, 33(3), 307-313. DOI: https://doi.org/10.1016/j.neuro.2012.01.016

Lümmen, P., Khajehali, J., Luther, K., & Van Leeuwen, T. (2014). The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect biochemistry and molecular biology, 55, 1-8. DOI: https://doi.org/10.1016/j.ibmb.2014.09.010

Khalighi, M., Tirry, L., & Van Leeuwen, T. (2014). Cross‐resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two‐spotted spider mite Tetranychus urticae. Pest management science, 70(3), 365-368. DOI: https://doi.org/10.1002/ps.3641

Flamini, G. (2003). Acaricides of natural origin, personal experiences and review of literature (1990-2001). Studies in natural products chemistry, 28, 381-451. DOI: https://doi.org/10.1016/S1572-5995(03)80146-1

Ilias, A., Vontas, J., & Tsagkarakou, A. (2014). Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect biochemistry and molecular biology, 48, 17-28. DOI: https://doi.org/10.1016/j.ibmb.2014.02.006

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., & Tirry, L. (2010). Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect biochemistry and molecular biology, 40(8), 563-572. DOI: https://doi.org/10.1016/j.ibmb.2010.05.008

De Beer, B., Villacis-Perez, E., Khalighi, M., Saalwaechter, C., Vandenhole, M., Jonckheere, W., ... & Dermauw, W. (2022). QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 145, 103757. DOI: https://doi.org/10.1016/j.ibmb.2022.103757

Mullen, G. R., & Durden, L. A. (Eds.). (2009). Medical and veterinary entomology. Academic press.

Lees, K., Jones, A. K., Matsuda, K., Akamatsu, M., Sattelle, D. B., Woods, D. J., & Bowman, A. S. (2014). Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus. International journal for parasitology, 44(1), 75-81. DOI: https://doi.org/10.1016/j.ijpara.2013.11.002

Obaid, M. K., Islam, N., Alouffi, A., Khan, A. Z., da Silva Vaz Jr, I., Tanaka, T., & Ali, A. (2022). Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Frontiers in Cellular and Infection Microbiology, 885. DOI: https://doi.org/10.3389/fcimb.2022.941831

Angus, B. M. (1996). The history of the cattle tick Boophilus microptus in Australia and achievements in its control. International journal for parasitology, 26(12), 1341-1355. DOI: https://doi.org/10.1016/S0020-7519(96)00112-9

George, J. E., Pound, J. M., & Davey, R. B. (2004). Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology, 129(S1), S353-S366.

Graham, O. H., & Hourrigan, J. L. (1977). Eradication programs for the arthropod parasites of livestock. Journal of medical entomology, 13(6), 629-658. DOI: https://doi.org/10.1093/jmedent/13.6.629

Drummond, R. E. A., Ernst, S. E., Trevino, J. L., Gladney, W. J., & Graham, O. H. (1973). Boophilus annulatus and B. microplus: laboratory tests of insecticides. Journal of economic entomology, 66(1), 130-133. DOI: https://doi.org/10.1093/jee/66.1.130

Matthewson, M. D., & Baker, J. A. F. (1975). Arsenic resistance in species of multi-host ticks in the Republic of South Africa and Swaziland. Journal of the South African Veterinary Association, 46(4), 341-344.

Klafke, G., Webster, A., Agnol, B. D., Pradel, E., Silva, J., de La Canal, L. H., ... & Martins, J. R. (2017). Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks and tick-borne diseases, 8(1), 73-80. DOI: https://doi.org/10.1016/j.ttbdis.2016.09.019

Klafke, G. M., Miller, R. J., Tidwell, J. P., Thomas, D. B., Sanchez, D., Arroyo, T. P. F., & de León, A. A. P. (2019). High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). International Journal for Parasitology: Drugs and Drug Resistance, 9, 100-111. DOI: https://doi.org/10.1016/j.ijpddr.2019.03.001

Higa, L. D. O. S., Garcia, M. V., Rodrigues, V. D. S., Junior, P. B., Barradas Pina, F. T., Barros, J. C., & Andreotti, R. (2019). Effects of cypermethrin, chlorpyrifos and piperonyl butoxide-based pour-on and spray acaricides on controlling the tick Rhipicephalus microplus. Systematic and Applied Acarology, 24(2), 278-286. DOI: https://doi.org/10.11158/saa.24.2.10

Aguilar-Tipacamu, G., Rosario-Cruz, R., Miller, R. J., Guerrero, F. D., Rodriguez-Vivas, R. I., & Garcia-Vazquez, Z. (2011). Phenotype changes inherited by crossing pyrethroid susceptible and resistant genotypes from the cattle tick Riphicephalus (Boophilus) microplus. Experimental and Applied Acarology, 54, 301-311. DOI: https://doi.org/10.1007/s10493-011-9441-9

Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J., & Iqbal, Z. (2014). Acaricide resistance in cattle ticks and approaches to its management: the state of play. Veterinary parasitology, 203(1-2), 6-20. DOI: https://doi.org/10.1016/j.vetpar.2014.03.006

Guerrero, F. D., Lovis, L., & Martins, J. R. (2012). Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Revista Brasileira de Parasitologia Veterinária, 21, 1-6. DOI: https://doi.org/10.1590/S1984-29612012000100002

Rodriguez-Vivas, R. I., Jonsson, N. N., & Bhushan, C. (2018). Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology research, 117, 3-29. DOI: https://doi.org/10.1007/s00436-017-5677-6

Urech, P. A., Staub, T., & Voss, G. (1997). Resistance as a concomitant of modern crop protection. Pesticide Science, 51(3), 227-234. DOI: https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<227::AID-PS646>3.0.CO;2-X

Showler, A. T., & Saelao, P. (2022). Integrative alternative tactics for ixodid control. Insects, 13(3), 302. DOI: https://doi.org/10.3390/insects13030302

Eisen, L. (2018). Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks and tick-borne diseases, 9(3), 535-542. DOI: https://doi.org/10.1016/j.ttbdis.2018.01.002

Miller, R. J., Li, A. Y., Tijerina, M., Davey, R. B., & George, J. E. (2008). Differential response to diazinon and coumaphos in a strain of Boophilus microplus (Acari: Ixodidae) collected in Mexico. Journal of medical entomology, 45(5), 905-911. DOI: https://doi.org/10.1093/jmedent/45.5.905

Fragoso, H., Soberanes, N., Ortiz, M., Santamaría, M., & Ortiz, A. (1995). Epidemiologia de la resistencia a ixodicidas piretroides en garrapatas Boophilus microplus en la Republica Mexicana. Seminario Internacional de Parasitología Animal-Resistencia y Control en Garrapatas y Moscas de Importancia Veterinaria. Acapulco, Guerrero, México, 45-57.

Miller, R. J., Davey, R. B., & George, J. E. (1999). Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). Journal of medical entomology, 36(5), 533-538. DOI: https://doi.org/10.1093/jmedent/36.5.533

Bull, M. S., Swindale, S., Overend, D., & Hess, E. A. (1996). Suppression of Boophilus microplus populations with fluazuron–an acarine growth regulator. Australian veterinary journal, 74(6), 468-470. DOI: https://doi.org/10.1111/j.1751-0813.1996.tb07575.x

de Oliveira, P. R., Calligaris, I. B., Roma, G. C., Bechara, G. H., Pizano, M. A., & Mathias, M. I. C. (2012). Potential of the insect growth regulator, fluazuron, in the control of Rhipicephalus sanguineus nymphs (Latreille, 1806)(Acari: Ixodidae): Determination of the LD95 and LD50. Experimental Parasitology, 131(1), 35-39. DOI: https://doi.org/10.1016/j.exppara.2012.02.023

Ishaaya, I., & Horowitz, A. R. (1998). Insecticides with novel modes of action: an overview. Insecticides with novel modes of action: mechanisms and application, 1-24. DOI: https://doi.org/10.1007/978-3-662-03565-8_1

Arredondo‐Jimenez, J. I., & Valdez‐Delgado, K. M. (2006). Effect of Novaluron (Rimon® 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Medical and Veterinary Entomology, 20(4), 377-387. DOI: https://doi.org/10.1111/j.1365-2915.2006.00656.x

Wilson, B. E., Showler, A. T., Reagan, T. E., & Beuzelin, J. M. (2012). Improved chemical control for the Mexican rice borer (Lepidoptera: Crambidae) in sugarcane: Larval exposure, a novel scouting method, and efficacy of a single aerial insecticide application. Journal of economic entomology, 105(6), 1998-2006. DOI: https://doi.org/10.1603/EC11271

Lefebvre, M., Bostanian, N. J., Mauffette, Y., Racette, G., Thistlewood, H. A., & Hardman, J. M. (2012). Laboratory-based toxicological assessments of new insecticides on mortality and fecundity of Neoseiulus fallacis (Acari: Phytoseiidae). Journal of Economic Entomology, 105(3), 866-871. DOI: https://doi.org/10.1603/EC11260

Beers, E. H., & Schmidt, R. A. (2014). Impacts of orchard pesticides on Galendromus occidentalis: Lethal and sublethal effects. Crop protection, 56, 16-24. DOI: https://doi.org/10.1016/j.cropro.2013.10.010

Jamil, R. Z. R., Vandervoort, C., Gut, L. J., Whalon, M. E., & Wise, J. C. (2016). Lethal time of insecticides on the predator mite Neoseiulus fallacis (Acari: Phytoseiidae) following topical exposure. The Canadian Entomologist, 148(3), 353-360. DOI: https://doi.org/10.4039/tce.2015.67

Rajapakse, C. N., Meola, R., & Readio, J. (2002). Comparative evaluation of juvenoids for control of cat fleas (Siphonaptera: Pulicidae) in topsoil. Journal of medical entomology, 39(6), 889-894.

Sánchez-Ramos, I., & Castañera, P. (2003). Laboratory evaluation of selective pesticides against the storage mite Tyrophagus putrescentiae (Acari: Acaridae). Journal of medical entomology, 40(4), 475-481.

Hubert, J., Stejskal, V., Munzbergova, Z., Hajslova, J., & Arthur, F. H. (2007). Toxicity and efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida). Experimental and Applied Acarology, 42, 283-290. DOI: https://doi.org/10.1007/s10493-007-9093-y

Kaplan, P., Yorulmaz, S., & Ay, R. (2012). Toxicity of insecticides and acaricides to the predatory mite Neoseiulus californicus (McGregor)(Acari: Phytoseiidae). International Journal of Acarology, 38(8), 699-705. DOI: https://doi.org/10.1080/01647954.2012.719031

Teel, P. D., Donahue, W. A., Strey, O. F., & Meola, R. W. (2014). Effects of pyriproxyfen on engorged females and newly oviposited eggs of the lone star tick (Acari: Ixodidae). Journal of medical entomology, 33(5), 721-725. DOI: https://doi.org/10.1093/jmedent/33.5.721

Rajapakse, C. N., Meola, R., & Readio, J. (2002). Comparative evaluation of juvenoids for control of cat fleas (Siphonaptera: Pulicidae) in topsoil. Journal of medical entomology, 39(6), 889-894. DOI: https://doi.org/10.1603/0022-2585-39.6.889

Sánchez-Ramos, I., & Castañera, P. (2003). Laboratory evaluation of selective pesticides against the storage mite Tyrophagus putrescentiae (Acari: Acaridae). Journal of medical entomology, 40(4), 475-481. DOI: https://doi.org/10.1603/0022-2585-40.4.475

Donahue, W. A., Teel, P. D., Strey, O. F., & Meola, R. W. (1997). Pyriproxyfen effects on newly engorged larvae and nymphs of the lone star tick (Acari: Ixodidae). Journal of medical entomology, 34(2), 206-211.

Strey, O. F., Teel, P. D., & Longnecker, M. T. (2001). Effects of pyriproxyfen on off-host water-balance and survival of adult lone star ticks (Acari: Ixodidae). Journal of medical entomology, 38(4), 589-595. DOI: https://doi.org/10.1603/0022-2585-38.4.589

Donahue, W. A., Teel, P. D., Strey, O. F., & Meola, R. W. (1997). Pyriproxyfen effects on newly engorged larvae and nymphs of the lone star tick (Acari: Ixodidae). Journal of medical entomology, 34(2), 206-211. DOI: https://doi.org/10.1093/jmedent/34.2.206

Keimer, A., Laurent-Brouty, N., Farokhi, F., Signargout, H., Cvetkovic, V., Bayen, A. M., & Johansson, K. H. (2018). Information patterns in the modeling and design of mobility management services. Proceedings of the IEEE, 106(4), 554-576. DOI: https://doi.org/10.1109/JPROC.2018.2800001

Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K., & Mita, T. (2010). The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochemical and biophysical research communications, 391(1), 744-749. DOI: https://doi.org/10.1016/j.bbrc.2009.11.131

Gassel, M., Wolf, C., Noack, S., Williams, H., & Ilg, T. (2014). The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid-and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochemistry and Molecular Biology, 45, 111-124. DOI: https://doi.org/10.1016/j.ibmb.2013.11.009

Asahi, M., Kobayashi, M., Matsui, H., & Nakahira, K. (2015). Differential mechanisms of action of the novel γ-aminobutyric acid receptor antagonist ectoparasiticides fluralaner (A1443) and fipronil. Pest management science, 71(1), 91-95. DOI: https://doi.org/10.1002/ps.3768

Kilp, S., Ramirez, D., Allan, M. J., Roepke, R. K., & Nuernberger, M. C. (2014). Pharmacokinetics of fluralaner in dogs following a single oral or intravenous administration. Parasites & vectors, 7, 1-5. DOI: https://doi.org/10.1186/1756-3305-7-85

Tabatabaei, S. A., Soleimani, M., Mansouri, M. R., Mirshahi, A., Inanlou, B., Abrishami, M., ... & Masarat, H. (2016). Closantel; a veterinary drug with potential severe morbidity in humans. BMC ophthalmology, 16(1), 1-5.

Drummond, R. O., & Miller, J. A. (1985). Systemic activity of closantel for control of lone star ticks, Amblyomma americanum (L.), on cattle. Experimental & applied acarology, 1, 193-202. DOI: https://doi.org/10.1007/BF01198516

Vardanyan, R., & Hruby, V. (2016). Chapter 36—Anthelmintics. Synthesis of Best-Seller Drugs; Vardanyan, R., Hruby, V., Eds, 749-764. DOI: https://doi.org/10.1016/B978-0-12-411492-0.00036-5

Tabatabaei, S. A., Soleimani, M., Mansouri, M. R., Mirshahi, A., Inanlou, B., Abrishami, M., ... & Masarat, H. (2016). Closantel; a veterinary drug with potential severe morbidity in humans. BMC ophthalmology, 16(1), 1-5. DOI: https://doi.org/10.1186/s12886-016-0387-x

Richard-Lenoble, D., Chandenier, J., & Gaxotte, P. (2003). Ivermectin and filariasis. Fundamental & clinical pharmacology, 17(2), 199-203. DOI: https://doi.org/10.1046/j.1472-8206.2003.00170.x

Õmura, S., & Crump, A. (2004). The life and times of ivermectin—a success story. Nature Reviews Microbiology, 2(12), 984-989. DOI: https://doi.org/10.1038/nrmicro1048

Camargo, J. A., Sapin, A., Daloz, D., & Maincent, P. (2010). Ivermectin-loaded microparticles for parenteral sustained release: in vitro characterization and effect of some formulation variables. Journal of microencapsulation, 27(7), 609-617. DOI: https://doi.org/10.3109/02652048.2010.501397

Sommer, C., Steffansen, B., Nielsen, B. O., Grønvold, J., Jensen, K. M. V., Jespersen, J. B., ... & Nansen, P. (1992). Ivermectin excreted in cattle dung after subcutaneous injection or pour-on treatment: concentrations and impact on dung fauna. Bulletin of Entomological Research, 82(2), 257-264. DOI: https://doi.org/10.1017/S0007485300051804

Gonzales, J. C., Muniz, R. A., Farias, A., Goncalves, L. C. B., & Rew, R. S. (1993). Therapeutic and persistent efficacy of doramectin against Boophilus microplus in cattle. Veterinary Parasitology, 49(1), 107-119. DOI: https://doi.org/10.1016/0304-4017(93)90229-G

Muniz, R. A., Hernandez, F., Lombardero, O., Leite, R. C., Moreno, J., Errecalde, J., & Goncalves, L. C. (1995). Efficacy of injectable doramectin against natural Boophilus microplus infestations in cattle. American journal of veterinary research, 56(4), 460-463.

Chapman, H. D. (1997). Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian pathology, 26(2), 221-244. DOI: https://doi.org/10.1080/03079459708419208

Esteve-Gasent, M. D., Rodríguez-Vivas, R. I., Medina, R. F., Ellis, D., Schwartz, A., Cortés Garcia, B., ... & Pérez de León, A. A. (2020). Research on integrated management for cattle fever ticks and bovine babesiosis in the United States and Mexico: current status and opportunities for binational coordination. Pathogens, 9(11), 871. DOI: https://doi.org/10.3390/pathogens9110871

Thullner, F., Willadsen, P., & Kemp, D. (2007). Acaricide rotation strategy for managing resistance in the tick Rhipicephalus (Boophilus) microplus (Acarina: Ixodidae): laboratory experiment with a field strain from Costa Rica. Journal of Medical Entomology, 44(5), 817-821. DOI: https://doi.org/10.1093/jmedent/44.5.817

Dumont, P., Fourie, J. J., Soll, M., & Beugnet, F. (2015). Repellency, prevention of attachment and acaricidal efficacy of a new combination of fipronil and permethrin against the main vector of canine babesiosis in Europe, Dermacentor reticulatus ticks. Parasites & vectors, 8(1), 1-6. DOI: https://doi.org/10.1186/s13071-015-1150-5

George, J. E., Pound, J. M., & Davey, R. B. (2004). Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology, 129(S1), S353-S366. DOI: https://doi.org/10.1017/S0031182003004682

Fernández-Salas, A., Rodríguez-Vivas, R. I., & Alonso-Díaz, M. Á. (2012). Resistance of Rhipicephalus microplus to amitraz and cypermethrin in tropical cattle farms in Veracruz, Mexico. Journal of Parasitology, 98(5), 1010-1014. DOI: https://doi.org/10.1645/GE-3074.1

Benelli, G., & Pavela, R. (2018). Repellence of essential oils and selected compounds against ticks—A systematic review. Acta tropica, 179, 47-54. DOI: https://doi.org/10.1016/j.actatropica.2017.12.025

Selles, S. M. A., Kouidri, M., González, M. G., González, J., Sánchez, M., González-Coloma, A., ... & Valcárcel, F. (2021). Acaricidal and repellent effects of essential oils against ticks: a review. Pathogens, 10(11), 1379. DOI: https://doi.org/10.3390/pathogens10111379

##submission.downloads##

Опубліковано

2023-10-16

Як цитувати

Андрейчин, М. А., Климнюк, С. І., & Романюк, Л. Б. (2023). АКАРИЦИДИ ТА ЇХ ЗАСТОСУВАННЯ (ЧАСТИНА 2). Інфекційні хвороби, (3), 65–76. https://doi.org/10.11603/1681-2727.2023.3.14209

Номер

Розділ

Огляди та лекції