АЦИНЕТОБАКТЕРНА ІНФЕКЦІЯ У ХВОРИХ НА COVID-19
DOI:
https://doi.org/10.11603/1681-2727.2023.3.14208Ключові слова:
Acinetobacter baumannii, нозокоміальні інфекції, COVID-19, інфекційний контроль, Agile-трансформаціяАнотація
Розробка стратегії запобігання нозокоміальним інфекціям нерозривно пов’язана з розумінням причин і механізмів їх поширення. Під час пандемії COVID-19 в Україні, як і в усьому світі, значно зросли ризики виникнення таких інфекцій. Всі медичні заклади є осередками підвищеного ризику передачі збудників, що найчастіше демонструють стійкість до антибіотиків та є причиною більшості нозокоміальних інфекцій (ESKAPE), але передусім стаціонари для лікування хворих на COVID-19.
Наведено інформацію про ко-інфекції та вторинні інфекції у хворих на COVID-19, що обумовлені Acinetobacter baumannii. A. baumannii займає лідируючі позиції серед збудників нозокоміальних інфекцій, що виникають у хворих на COVID-19. Захворювання має тяжкий клінічний перебіг й високу смертність через значну стійкість мікроорганізму до більшості антибактерійних препаратів. Основною причиною цього є зміна властивостей A. baumannii через некоректне використання антимікробних засобів і створення умов для відбору полі- та панрезистентних штамів у медичних закладах, зокрема за рахунок міжвидової передачі генів антибіотикорезистентності. Особливо це стосується аерозольної передачі, оскільки майже всі госпіталізовані пацієнти зі зниженою сатурацією та підозрою на інфікованість SARS-CoV-2 потребують госпіталізації і кисневої терапії.
Розвиток A. baumanii-інфекції призводить до подовження тривалості лікування, збільшення летальних випадків, матеріальних збитків і негативно впливає на психологічний стан хворих. Для успішного уникнення таких ситуацій важливо дотримуватися суворих принципів інфекційного контролю. Для забезпечення ефективності протиепідемічних і профілактичних заходів необхідна Agile-трансформація систем надання медичних послуг шляхом підвищення адаптивності та резельєнтності процесів ресурсного забезпечення в умовах пандемій та воєнних конфліктів.
Посилання
Walsh, T. R., Gales, A. C., Laxminarayan, R., & Dodd, P. C. (2023). Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLOS Medicine, 20(7), e1004264. https://doi.org/10.1371/journal.pmed.1004264 DOI: https://doi.org/10.1371/journal.pmed.1004264
Салманов, А. Г., Вернер, О. М., Слепова, Л. Ф. (2018). Епідеміологія та антимікробна резистентність Acinetobacter. International Journal of Antibiotics and Probiotics, 4-5(4), 46–59. https://doi.org/10.31405/ijap.4-5.18.05 DOI: https://doi.org/10.31405/ijap.4-5.18.05
Nurjadi, D., & Boutin, S. (2022). Acinetobacter baumannii. In: Molecular Typing in Bacterial Infections, Volume II (pp. 113–129). Springer International Publishing. https://doi.org/10.1007/978-3-030-83217-9_6 DOI: https://doi.org/10.1007/978-3-030-83217-9_6
Loyola-Cruz, M. Á., Gonzalez-Avila, L. U., Martínez-Trejo, A., Saldaña-Padilla, A., Hernández-Cortez, C., Bello-López, J. M., & Castro-Escarpulli, G. (2023). ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens, 12(5), 743. https://doi.org/10.3390/pathogens12050743 DOI: https://doi.org/10.3390/pathogens12050743
Mirzaei, R., Goodarzi, P., Asadi, M., Soltani, A., Aljanabi, H. a. a., Jeda, A. S., Dashtbin, S., Jalalifar, S., Mohammadzadeh, R., Teimoori, A., Tari, K., Salari, M., Ghiasvand, S., Kazemi, S., Yousefimashouf, R., Keyvani, H., & Karampoor, S. (2020). Bacterial co-infections with SARS-CoV -2. IUBMB Life, 72(10), 2097–2111. https://doi.org/10.1002/iub.2356 DOI: https://doi.org/10.1002/iub.2356
Li, J., Wang, J., Yang, Y., Cai, P., Cao, J., Cai, X., & Zhang, Y. (2020). Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00819-1
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3 DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Lai, C.-C., Wang, C.-Y., & Hsueh, P.-R. (2020). Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? Journal of Microbiology, Immunology and Infection, 53(4), 505–512. https://doi.org/10.1016/j.jmii.2020.05.013 DOI: https://doi.org/10.1016/j.jmii.2020.05.013
Wong, D., Nielsen, T. B., Bonomo, R. A., Pantapalangkoor, P., Luna, B., & Spellberg, B. (2016). Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clinical Microbiology Reviews, 30(1), 409–447. https://doi.org/10.1128/cmr.00058-16 DOI: https://doi.org/10.1128/CMR.00058-16
Cosgaya, C., Marí-Almirall, M., Van Assche, A., Fernández-Orth, D., Mosqueda, N., Telli, M., Huys, G., Higgins, P. G., Seifert, H., Lievens, B., Roca, I., & Vila, J. (2016). Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. International Journal of Systematic and Evolutionary Microbiology, 66(10), 4105–4111. https://doi.org/10.1099/ijsem.0.001318 DOI: https://doi.org/10.1099/ijsem.0.001318
Nemec, A., Krizova, L., Maixnerova, M., Sedo, O., Brisse, S., & Higgins, P. G. (2015). Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex isolated from human clinical specimens. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_3), 934–942. https://doi.org/10.1099/ijs.0.000043 DOI: https://doi.org/10.1099/ijs.0.000043
Sehree, M. M., Abdullah, H. N., & Jasim, A. M. (2021). Isolation and Evaluation of Clinically Important Acinetobacter Baumannii From Intensive Care Unit Samples. Journal of Techniques, 3(3), 83–90. https://doi.org/10.51173/jt.v3i3.324 DOI: https://doi.org/10.51173/jt.v3i3.324
Lee, C.-R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C.-J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00055 DOI: https://doi.org/10.3389/fcimb.2017.00055
Marí-Almirall, M., Cosgaya, C., Higgins, P. G., Van Assche, A., Telli, M., Huys, G., Lievens, B., Seifert, H., Dijkshoorn, L., Roca, I., & Vila, J. (2017). MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. seifertii and A. dijkshoorniae species. Clinical Microbiology and Infection, 23(3), 210.e1–210.e9. https://doi.org/10.1016/j.cmi.2016.11.020 DOI: https://doi.org/10.1016/j.cmi.2016.11.020
Lin, M.-F. (2014). Antimicrobial resistance inAcinetobacter baumannii: From bench to bedside. World Journal of Clinical Cases, 2(12), 787. https://doi.org/10.12998/wjcc.v2.i12.787 DOI: https://doi.org/10.12998/wjcc.v2.i12.787
Sievert, D. M., Ricks, P., Edwards, J. R., Schneider, A., Patel, J., Srinivasan, A., Kallen, A., Limbago, B., & Fridkin, S. (2013). Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infection Control & Hospital Epidemiology, 34(1), 1–14. https://doi.org/10.1086/668770 DOI: https://doi.org/10.1086/668770
Joshi, S. (2022). Beta-lactam beta-lactamase inhibitors. Journal of The Academy of Clinical Microbiologists, 24(2), 63. https://doi.org/10.4103/jacm.jacm_21_22 DOI: https://doi.org/10.4103/jacm.jacm_21_22
Oliveira, E. A. d., Paula, G. R. d., Mondino, P. J. J., Chagas, T. P. G., Mondino, S. S. B. d., & Mendonça-Souza, C. R. V. d. (2019). High rate of detection of OXA-23-producing Acinetobacter from two general hospitals in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 52. https://doi.org/10.1590/0037-8682-0243-2019 DOI: https://doi.org/10.1590/0037-8682-0243-2019
Ruppé, É., Woerther, P.-L., & Barbier, F. (2015). Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of Intensive Care, 5(1). https://doi.org/10.1186/s13613-015-0061-0. DOI: https://doi.org/10.1186/s13613-015-0061-0
Zilberberg, M. D., Kollef, M. H., & Shorr, A. F. (2015). Secular trends inAcinetobacter baumanniiresistance in respiratory and blood stream specimens in the United States, 2003 to 2012: A survey study. Journal of Hospital Medicine, 11(1), 21–26. https://doi.org/10.1002/jhm.2477 DOI: https://doi.org/10.1002/jhm.2477
Qureshi, Z. A., Hittle, L. E., O’Hara, J. A., Rivera, J. I., Syed, A., Shields, R. K., Pasculle, A. W., Ernst, R. K., & Doi, Y. (2015). Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance. Clinical Infectious Diseases, 60(9), 1295–1303. https://doi.org/10.1093/cid/civ048 DOI: https://doi.org/10.1093/cid/civ048
Antibiotic resistance threats in the United States, 2019. (2019). Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532 DOI: https://doi.org/10.15620/cdc:82532
Nutman, A., Lerner, A., Schwartz, D., & Carmeli, Y. (2016). Evaluation of carriage and environmental contamination by carbapenem-resistant Acinetobacter baumannii. Clinical Microbiology and Infection, 22(11), 949.e5–949.e7. https://doi.org/10.1016/j.cmi.2016.08.020 DOI: https://doi.org/10.1016/j.cmi.2016.08.020
Chen, C.-H., Lin, L.-C., Chang, Y.-J., Chen, Y.-M., Chang, C.-Y., & Huang, C.-C. (2015). Infection Control Programs and Antibiotic Control Programs to Limit Transmission of Multi-Drug Resistant Acinetobacter baumannii Infections: Evolution of Old Problems and New Challenges for Institutes. International Journal of Environmental Research and Public Health, 12(8), 8871–8882. https://doi.org/10.3390/ijerph120808871 DOI: https://doi.org/10.3390/ijerph120808871
Підвищення ризиків поширення внутрішньолікарняної інфекції в період пандемії COVID-19 в Україні. (2021). Ukrainian Medical Journal, 143. https://doi.org/10.32471/umj.1680-3051.143.208864 DOI: https://doi.org/10.32471/umj.1680-3051.143.208864
Langford, B. J., So, M., Raybardhan, S., Leung, V., Westwood, D., MacFadden, D. R., Soucy, J.-P. R., & Daneman, N. (2020). Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clinical Microbiology and Infection, 26(12), 1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016 DOI: https://doi.org/10.1016/j.cmi.2020.07.016
Gottesman, T., Fedorowsky, R., Yerushalmi, R., Lellouche, J., & Nutman, A. (2021). An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infection Prevention in Practice, 3(1), 100113. https://doi.org/10.1016/j.infpip.2021.100113 DOI: https://doi.org/10.1016/j.infpip.2021.100113
Shinohara, D. R., dos Santos Saalfeld, S. M., Martinez, H. V., Altafini, D. D., Costa, B. B., Fedrigo, N. H., & Tognim, M. C. B. (2021). Outbreak of endemic carbapenem-resistant Acinetobacter baumannii in a coronavirus disease 2019 (COVID-19)–specific intensive care unit. Infection Control & Hospital Epidemiology, 1–3. https://doi.org/10.1017/ice.2021.98 DOI: https://doi.org/10.1017/ice.2021.98
Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), 373. https://doi.org/10.3390/pathogens10030373 DOI: https://doi.org/10.3390/pathogens10030373
Rasmussen, S. A., Smulian, J. C., Lednicky, J. A., Wen, T. S., & Jamieson, D. J. (2020). Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. American Journal of Obstetrics and Gynecology, 222(5), 415–426. https://doi.org/10.1016/j.ajog.2020.02.017 DOI: https://doi.org/10.1016/j.ajog.2020.02.017
Ritchie, A. I., & Singanayagam, A. (2020). Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? The Lancet, 395(10230), 1111. https://doi.org/10.1016/s0140-6736(20)30691-7 DOI: https://doi.org/10.1016/S0140-6736(20)30691-7
Ripa, M., Galli, L., Poli, A., Oltolini, C., Spagnuolo, V., Mastrangelo, A., Muccini, C., Monti, G., De Luca, G., Landoni, G., Dagna, L., Clementi, M., Rovere Querini, P., Ciceri, F., Tresoldi, M., Lazzarin, A., Zangrillo, A., Scarpellini, P., Castagna, A., ... Vinci, C. (2020). Secondary infections in patients hospitalized with COVID-19: incidence and predictive factors. Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2020.10.021 DOI: https://doi.org/10.1016/j.cmi.2020.10.021
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/s0140-6736(20)30211-7 DOI: https://doi.org/10.1016/S0140-6736(20)30211-7
Wang, Z., Yang, B., Li, Q., Wen, L., & Zhang, R. (2020). Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clinical Infectious Diseases, 71(15), 769–777. https://doi.org/10.1093/cid/ciaa272 DOI: https://doi.org/10.1093/cid/ciaa272
Contou, D., Claudinon, A., Pajot, O., Micaëlo, M., Longuet Flandre, P., Dubert, M., Cally, R., Logre, E., Fraissé, M., Mentec, H., & Plantefève, G. (2020). Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of Intensive Care, 10(1). https://doi.org/10.1186/s13613-020-00736-x DOI: https://doi.org/10.1186/s13613-020-00736-x
Li, J., Wang, J., Yang, Y., Cai, P., Cao, J., Cai, X., & Zhang, Y. (2020). Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00819-1 DOI: https://doi.org/10.1186/s13756-020-00819-1
Zhang, G., Hu, C., Luo, L., Fang, F., Chen, Y., Li, J., Peng, Z., & Pan, H. (2020). Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. Journal of Clinical Virology, 127, 104364. https://doi.org/10.1016/j.jcv.2020.104364 DOI: https://doi.org/10.1016/j.jcv.2020.104364
Hughes, S., Troise, O., Donaldson, H., Mughal, N., & Moore, L. S. P. (2020). Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26(10), 1395–1399. https://doi.org/10.1016/j.cmi.2020.06.025 DOI: https://doi.org/10.1016/j.cmi.2020.06.025
Lescure, F.-X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P.-H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J.-C., Mentre, F., Duval, X., Descamps, D., Malvy, D., ... Yazdanpanah, Y. (2020). Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The Lancet Infectious Diseases, 20(6), 697–706. https://doi.org/10.1016/s1473-3099(20)30200-0 DOI: https://doi.org/10.1016/S1473-3099(20)30200-0
Nebreda-Mayoral, T., Miguel-Gómez, M. A., March-Rosselló, G. A., Puente-Fuertes, L., Cantón-Benito, E., Martínez-García, A. M., Muñoz-Martín, A. B., & Orduña-Domingo, A. (2020). Infección bacteriana/fúngica en pacientes con COVID-19 ingresados en un hospital de tercer nivel de Castilla y León, España. Enfermedades Infecciosas y Microbiología Clínica. https://doi.org/10.1016/j.eimc.2020.11.003 DOI: https://doi.org/10.1016/j.eimc.2020.11.003
Karruli, A., Boccia, F., Gagliardi, M., Patauner, F., Ursi, M. P., Sommese, P., De Rosa, R., Murino, P., Ruocco, G., Corcione, A., Andini, R., Zampino, R., & Durante-Mangoni, E. (2021). Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. Microbial Drug Resistance, 27(9), 1167–1175. https://doi.org/10.1089/mdr.2020.0489 DOI: https://doi.org/10.1089/mdr.2020.0489
Yang, S., Hua, M., Liu, X., Du, C., Pu, L., Xiang, P., Wang, L., & Liu, J. (2021). Bacterial and fungal co-infections among COVID-19 patients in intensive care unit. Microbes and Infection, 23(4-5), 104806. https://doi.org/10.1016/j.micinf.2021.104806 DOI: https://doi.org/10.1016/j.micinf.2021.104806
Durán-Manuel, E. M., Cruz-Cruz, C., Ibáñez-Cervantes, G., Bravata-Alcantará, J. C., Sosa-Hernández, O., Delgado-Balbuena, L., León-García, G., Cortés-Ortíz, I. A., Cureño-Díaz, M. A., Castro-Escarpulli, G., Vélez-Reséndiz, J. M., & Bello-López, J. M. (2021). Clonal dispersion of Acinetobacter baumannii in an intensive care unit designed to patients COVID-19. The Journal of Infection in Developing Countries, 15(01), 58–68. https://doi.org/10.3855/jidc.13545 DOI: https://doi.org/10.3855/jidc.13545
Sharifipour, E., Shams, S., Esmkhani, M., Khodadadi, J., Fotouhi-Ardakani, R., Koohpaei, A., Doosti, Z., & EJ Golzari, S. (2020). Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infectious Diseases, 20(1). https://doi.org/10.1186/s12879-020-05374-z DOI: https://doi.org/10.1186/s12879-020-05374-z
Perez, S., Innes, G. K., Walters, M. S., Mehr, J., Arias, J., Greeley, R., & Chew, D. (2020). Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions — New Jersey, February–July 2020. MMWR. Morbidity and Mortality Weekly Report, 69(48), 1827–1831. https://doi.org/10.15585/mmwr.mm6948e1 DOI: https://doi.org/10.15585/mmwr.mm6948e1
Duployez, C., Guern, R. L., Milliere, L., Caplan, M., Loïez, C., Ledoux, G., Jaillette, E., Favory, R., Mathieu, D., & Wallet, F. (2020). An outbreak can hide another. Japanese Journal of Infectious Diseases. https://doi.org/10.7883/yoken.jjid.2020.705 DOI: https://doi.org/10.7883/yoken.JJID.2020.705
Silva, D. L., Lima, C. M., Magalhães, V. C. R., Baltazar, L. M., Peres, N. T. A., Caligiorne, R. B., Moura, A. S., Fereguetti, T., Martins, J. C., Rabelo, L. F., Abrahão, J. S., Lyon, A. C., Johann, S., & Santos, D. A. (2021). Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. Journal of Hospital Infection, 113, 145–154. https://doi.org/10.1016/j.jhin.2021.04.001 DOI: https://doi.org/10.1016/j.jhin.2021.04.001
Ramadan, H. K.-A., Mahmoud, M. A., Aburahma, M. Z., Elkhawaga, A. A., El-Mokhtar, M. A., Sayed, I. M., Hosni, A., Hassany, S. M., & Medhat, M. A. (2020). Predictors of Severity and Co-Infection Resistance Profile in COVID-19 Patients: First Report from Upper Egypt. Infection and Drug Resistance, Volume 13, 3409–3422. https://doi.org/10.2147/idr.s272605 DOI: https://doi.org/10.2147/IDR.S272605
Cultrera, R., Barozzi, A., Libanore, M., Marangoni, E., Pora, R., Quarta, B., Spadaro, S., Ragazzi, R., Marra, A., Segala, D., & Volta, C. A. (2021). Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings. International Journal of Environmental Research and Public Health, 18(8), 4358. https://doi.org/10.3390/ijerph18084358 DOI: https://doi.org/10.3390/ijerph18084358
Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a Successful Pathogen. Clinical Microbiology Reviews, 21(3), 538–582. https://doi.org/10.1128/cmr.00058-07 DOI: https://doi.org/10.1128/CMR.00058-07
Zeighami, H., Valadkhani, F., Shapouri, R., Samadi, E., & Haghi, F. (2019). Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infectious Diseases, 19(1). https://doi.org/10.1186/s12879-019-4272-0 DOI: https://doi.org/10.1186/s12879-019-4272-0
Ghasemi, E., Ghalavand, Z., Goudarzi, H., Yeganeh, F., Hashemi, A., Dabiri, H., Mirsamadi, E. S., & Foroumand, M. (2018). Phenotypic and Genotypic Investigation of Biofilm Formation in Clinical and Environmental Isolates of Acinetobacter baumannii. Archives of Clinical Infectious Diseases, 13(4). https://doi.org/10.5812/archcid.12914 DOI: https://doi.org/10.5812/archcid.12914
Vijayakumar, S., Rajenderan, S., Laishram, S., Anandan, S., Balaji, V., & Biswas, I. (2016). Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00105 DOI: https://doi.org/10.3389/fpubh.2016.00105
Bianco, A., Quirino, A., Giordano, M., Marano, V., Rizzo, C., Liberto, M. C., Focà, A., & Pavia, M. (2016). Control of carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit of a teaching hospital in Southern Italy. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/s12879-016-2036-7 DOI: https://doi.org/10.1186/s12879-016-2036-7
Anane A, Y., Apalata, T., Vasaikar, S., Okuthe, G. E., & Songca, S. (2019). Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa. The Brazilian Journal of Infectious Diseases, 23(6), 371–380. https://doi.org/10.1016/j.bjid.2019.09.004 DOI: https://doi.org/10.1016/j.bjid.2019.09.004
Gales, A. C., Seifert, H., Gur, D., Castanheira, M., Jones, R. N., & Sader, H. S. (2019). Antimicrobial Susceptibility of Acinetobacter calcoaceticus–Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infectious Diseases, 6(Supplement_1), S34—S46. https://doi.org/10.1093/ofid/ofy293 DOI: https://doi.org/10.1093/ofid/ofy293
Gil-Marqués, M. L., Moreno-Martínez, P., Costas, C., Pachón, J., Blázquez, J., & McConnell, M. J. (2018). Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 73(11), 2960–2968. https://doi.org/10.1093/jac/dky289 DOI: https://doi.org/10.1093/jac/dky289
Rodríguez, C. H., Nastro, M., & Famiglietti, A. (2018). Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiología, 50(3), 327–333. https://doi.org/10.1016/j.ram.2017.10.006 DOI: https://doi.org/10.1016/j.ram.2017.10.006
Ayobami, O., Willrich, N., Harder, T., Okeke, I. N., Eckmanns, T., & Markwart, R. (2019). The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerging Microbes & Infections, 8(1), 1747–1759. https://doi.org/10.1080/22221751.2019.1698273 DOI: https://doi.org/10.1080/22221751.2019.1698273
Boinett, C. J., Cain, A. K., Hawkey, J., Do Hoang, N. T., Khanh, N. N. T., Thanh, D. P., Dordel, J., Campbell, J. I., Lan, N. P. H., Mayho, M., Langridge, G. C., Hadfield, J., Chau, N. V. V., Thwaites, G. E., Parkhill, J., Thomson, N. R., Holt, K. E., & Baker, S. (2019). Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microbial Genomics, 5(2). https://doi.org/10.1099/mgen.0.000246 DOI: https://doi.org/10.1099/mgen.0.000246
Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416–422. https://doi.org/10.1016/j.cmi.2015.12.002 DOI: https://doi.org/10.1016/j.cmi.2015.12.002
Nori, P., Cowman, K., Chen, V., Bartash, R., Szymczak, W., Madaline, T., Punjabi Katiyar, C., Jain, R., Aldrich, M., Weston, G., Gialanella, P., Corpuz, M., Gendlina, I., & Guo, Y. (2020). Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infection Control & Hospital Epidemiology, 42(1), 84–88. https://doi.org/10.1017/ice.2020.368 DOI: https://doi.org/10.1017/ice.2020.368
Porretta, A. D., Baggiani, A., Arzilli, G., Casigliani, V., Mariotti, T., Mariottini, F., Scardina, G., Sironi, D., Totaro, M., Barnini, S., & Privitera, G. P. (2020). Increased Risk of Acquisition of New Delhi Metallo-Beta-Lactamase-Producing Carbapenem-Resistant Enterobacterales (NDM-CRE) among a Cohort of COVID-19 Patients in a Teaching Hospital in Tuscany, Italy. Pathogens, 9(8), 635. https://doi.org/10.3390/pathogens9080635 DOI: https://doi.org/10.3390/pathogens9080635
Tiri, B., Sensi, E., Marsiliani, V., Cantarini, M., Priante, G., Vernelli, C., Martella, L. A., Costantini, M., Mariottini, A., Andreani, P., Bruzzone, P., Suadoni, F., Francucci, M., Cirocchi, R., & Cappanera, S. (2020). Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? Journal of Clinical Medicine, 9(9), 2744. https://doi.org/10.3390/jcm9092744 DOI: https://doi.org/10.3390/jcm9092744
Zhou, H., Yao, Y., Zhu, B., Ren, D., Yang, Q., Fu, Y., Yu, Y., & Zhou, J. (2019). Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia. Medicine, 98(13), Стаття e14937. https://doi.org/10.1097/md.0000000000014937 DOI: https://doi.org/10.1097/MD.0000000000014937
Kaye, K. S., & Pogue, J. M. (2015). Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(10), 949–962. https://doi.org/10.1002/phar.1636 DOI: https://doi.org/10.1002/phar.1636
Dotsenko, N., Chumachenko, D., Husieva, Y., Kosenko, N., & Chumachenko, I. (2022). Sustainable Management of Healthcare Settings’ Personnel Based on Intelligent Project-Oriented Approach for Post-War Development. Energies, 15(22), 8381. https://doi.org/10.3390/en15228381 DOI: https://doi.org/10.3390/en15228381
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 А. В. Бондаренко, І. В. Чумаченко, О. В. Бондаренко, Д. В. Кацапов, Н. В. Доценко, І. В. Крохмаль
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи, яка через [ВКАЖІТЬ ПЕРІОД ЧАСУ] з дати публікації автоматично стає доступною на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).