APPLICATION OF COMSOL MULTIPHYSICS FOR MATHEMATICAL MODELING OF THE STUDY OF THE PROCESS OF DNA BREAKDOWN IN PLASMA

Authors

  • D. V. Vakulenko I. Horbachevsky Ternopil State Medical University
  • O. M. Kuchvara I. Horbachevsky Ternopil State Medical University
  • A. V. Semenets I. Horbachevsky Ternopil State Medical University https://orcid.org/0000-0002-6069-0467
  • I. Ye. Andrushchak Lutsk National Technical University

DOI:

https://doi.org/10.11603/me.2414-5998.2019.3.10539

Keywords:

COMSOL Multiphysics, mathematical modeling in pharmacy

Abstract

The use of modern computer technology in the course of teaching computer modeling in pharmacy contributes to the formation of skills and competencies in the conditions of continuous development of computerization and implementation of mathematical modeling in pharmacy.  In particular, the article discusses the advantages and disadvantages of using mathematical modeling using COMSOL Multiphysics to shape the competencies of future pharmacists.

 The degree of efficiency, convenience and accessibility of the COMSOL Multiphysics software environment in computer modeling in pharmacy for students of the 3rd year of study of the Faculty of Pharmacy on the example of studying the process of DNA decay in plasma is considered.

 The use of modern computer products in the teaching of computer technology in pharmacy contributes to the development of mathematical modeling skills in pharmacy, in particular, gene therapy is one example of clinical biotechnology.  Solution to the main problem – delivery of genes related to the transport of plasmid DNA (pDNA) to targets and conversion between different forms of pDNA, the use of parameter estimation by engineering and interface reactions, to find the rate constants of three consecutive reactions involved in the DNA process  degradation.

References

Vvedenia v Comsol Multiphysics [Introduction to Comsol Multiphysics]. Retrieved from: http://cdn.comsol.com/docs/5.4/IntroductionToCOMSOLMultiphysicsRU54.pdf [in Ukrainian].

Zhulkevych, I.V., & Kryvokulskyi, B.D. (2018). Personalizatsiia v onkolohii: indyvidualnyi pidkhid do profilaktyky tromboembolichnykh uskladnen pry panhisterektomii [Personalization in oncology: individual approach to the prevention of thromboembolic complications during hysterectomy]. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorovia Ukrainy – Bulletin of Social Hygiene and Health Care Organization of Ukraine, 4 (78), 11-18 [in Ukrainian].

Martsenyuk, V.P., Semenets, A.V., & Sverstyuk, A.S. (2003). Kontseptualnye podkhody k integrirovannoy srede provedeniya nauchnykh medyko-biologicheskykh issledovaniy [Conceptual approaches to an integrated environment for scientific and biological research]. Shtuchnyy intelekt – Artificial Intelligence, 2, 35-43 [in Russian].

Martsenyuk, V.P., Kovalchuk, O.L., & Zhulkevych, I.V. (2002). Matematychni teorii ta alhorytmy dlia modelyuvannia rekonstruktsiii kistkovoi tkanyny. Problemy osteoporozu [Mathematical Theories and Algorithms for Simulation of Bone Tissue Reconstruction. Problems of Osteoporosis]. Kovalchuk, L.Ya. (Ed.). Ternopil: Ukrmedknyha (pp. 78-94) [in Ukrainian].

Martseniuk, V.P., Zhulkevych, I.V., & Kovalchuk, O.Ya. (2001). Pro neliniinu dynamichnu systemu rekonstruktsii kistkovoi tkanyny [On nonlinear dynamical system of bone tissue reconstruction]. Visnyk Kyivskoho universytetu. Ser. Fizyko-matematychni nauky – Bulletin of the University of Kyiv. Avg. Physical and Mathematical Sciences, 4, 292-298 [in Ukrainian].

Kovalenko, A.V., Uzdenova, A.M., Urtenov, M.Kh., & Nikonenko, V.V. (2017). Matematicheskoye modelirovaniye fiziko-khimicheskikh protsesov v srede Comsol Multiphysics 5.2 [Mathematical modeling of physicochemical processes in a medium Comsol Multiphysics 5.2]. [in Russian].

Samarskyi, A.A. (2002). Matematychne modeliuvannia: idei, metody, pryklady [Mathematical modeling: idea, methody, apply]. Moscow: Fizmatgiz. Retrieved from: http://www.immsp.kiev.ua/postgraduate/Biblioteka_trudy/MatemModelirovSamarskij2001.pdf [in Ukrainian].

Houk, B.E., Hochhaus, G., & Hughes, J.A. (1999). Kinetic modeling of plasmid DNA degradation in rat plasma. AAPS Pharmsci, 1, 3, 15-20. DOI: https://doi.org/10.1208/ps010309

Logoyda, L., Kovalenko, S., AbdelMegied, A.M., Zhulkevych, I., Drapak, I., Demchuk, I., & Netsyuk, O. (2019). HPLC method development for the analysis of bisoprolol in combined dosage form containing Bisoprolol and Enalapril and in vitro dissolution studied. International Journal of Applied Pharmaceutics, 11 (3), 186-194. DOI: https://doi.org/10.22159/ijap.2019v11i3.32391. DOI: https://doi.org/10.22159/ijap.2019v11i3.32391

Wilkes, J.O. (2017). Fluid mechanics for chemical engineers with microfluidics, CFD, and COMSOL multiphysics 5 / Prentice hall international series in the physical and chemical engineering sciences (the 3-th edn.). Prentice Hall.

Published

2019-11-01

How to Cite

Vakulenko, D. V., Kuchvara, O. M., Semenets, A. V., & Andrushchak, I. Y. (2019). APPLICATION OF COMSOL MULTIPHYSICS FOR MATHEMATICAL MODELING OF THE STUDY OF THE PROCESS OF DNA BREAKDOWN IN PLASMA. Medical Education, (3), 62–65. https://doi.org/10.11603/me.2414-5998.2019.3.10539

Issue

Section

COMPETENCY-BASED APPROACH IN HIGHER MEDICAL EDUCATION