HYPOXIC-ISCHEMIC FETAL BRAIN INJURY: FORECASTING AND PREVENTION

Authors

  • S. P. Posokhova Odessa National Medical University
  • O. Yu. Kucherenko Odessa National Medical University
  • K. O. Nitochko Odessa National Medical University

DOI:

https://doi.org/10.11603/24116-4944.2020.2.11852

Keywords:

hypoxic-ischemic encephalopathy, prematurity, preterm labor, chorionamnionitis, neuroprotection

Abstract

The aim of the study – to investigate the influence of risk factors in the mother and morbidity in the neonatal period on the development of hypoxic-ischemic encephalopathy of newborns, depending on their gestational age, as well as to determine the effect of neuroprotection on the development of hypoxic brain lesions in premature infants.

Materials and Methods. At the first stage, a retrospective analysis of the course of pregnancy, childbirth and the condition of newborns was carried out in 150 women whose children had suffered from hypoxic-ischemic brain damage. Group I (GI) consisted of 62 women who gave birth to full-term babies, Group II (GII) – 88 women who gave birth prematurely at 26+6–33+6 weeks of gestation. At the second stage, the level of neurospecific markers of nerve tissue damage (NSE and S100) was prospectively investigated in 60 preterm infants at gestational terms up to 32 weeks, who were divided into two groups. The main group (MG) consisted of 30 preterm infants whose mothers were injected with magnesium sulfate for the purpose of neuroprotection, the comparison group (CG) – 30 preterm infants whose mothers did not receive neuroprotection for various reasons.

Results and Discussion. The risk factors for the birth of children with HIE include extragenital pathology in the mother (OR 1090.818, 95 % CI 64.501–18447.401), urogenital infections – chlamydia (OR 21.87, 95 % CI 1.264 – 378.397), prematurity, low weight bodies at birth, PROM, chorionamnionitis (OR 17.6, 95 % CI 2.288 – 135.407), Apgar score <7 points, morbidity in the neonatal period. Neurospecific enolase (NSE) was significantly higher in children with gestational age up to 32 weeks and an Apgar score of <6 points. The lower concentration of protein S100 in newborns of the main group can be explained by the protective effect of magnesium sulfate on the central nervous system of a premature newborn.

Conclusions. Risk factors for neurological disorders in newborns include extragenital pathology, urogenital infections of the mother, prematurity, premature rupture of the membranes, the development of chorionamnionitis, and fetal growth retardation. Conducting neuroprotection with magnesium sulfate before delivery is an important measure to prevent hypoxic-ischemic brain damage to the fetus and premature newborn.

Author Biographies

S. P. Posokhova, Odessa National Medical University

Doctor of Medical Sciences, Professor of the Department of Obstetrics and Gynecology, Odessa National Medical University

O. Yu. Kucherenko, Odessa National Medical University

graduate student of the Department of Obstetrics and Gynecology Odessa National Medical University

K. O. Nitochko, Odessa National Medical University

Candidate of Medical Sciences, Associate Professor of the Department of Obstetrics and Gynecology, Odessa National Medical University

References

Antipkin, Yu.G., Volosovets, A.P., Maidannik, V.G., Berezenko, V.S., Moiseenko, R.A., Vygovskaya, O.V., …, & Mozyrskaya, E.V. (2018). Stan zdorovia dytiachoho naselennia – maibutnie krainy (chastyna 2) [Child health status – the future of the country (part 2)]. Zdorovia dytyny – Child Health, 13 (2), 142-152 [in Ukrainian].

Slabkiy, G.O., Shafranskiy, V.V., & Dudina, O.O. (2016). Invalidnist ditei iak problema hromadskoho zdorovia: profilaktyka ta zabezpechennia efektyvnoi reabilitatsii [Disability of children as a problem of public health: prevention and effective rehabilitation]. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorovia Ukrainy – Bulletin of Social Hygiene and Health Protection Organization of Ukraine, 3 (69), 4-9 DOI: https://doi.org/10.11603/1681-2786.2016.3.7002 [in Ukrainian].

(2019). Stan zdorovia ditei 0–17 rokiv vkliuchno za 2018 rik (analitychno-statystychnyi dovidnyk) [Child health status 0-17 years including for 2018 (analytical and statistical reference book)]. Kyiv: Tsentr medychnoi statystyky MOZ Ukrainy [in Ukrainian].

Dudina, O.O., Haborets, Yu.Yu., & Voloshyna, U.V. (2015). Do stanu zdorovia dytiachoho naselennia [To the сhild health status]. Ukraina. Zdorovia natsii – Ukraine. The Health of the Nation, 3, 10-11 [in Ukrainian].

Moiseienko, R.O., & Martyniuk, V.Yu. (2015). Kontseptsiia sotsialnoi pediatrii (kompleksnoi medyko-sotsialnoi reabilitatsii ditei z obmezhenniamy zhyttyediialnosti) [The concept of social pediatrics (complex medical and social rehabilitation of children with disabilities)]. Reabilitatsiia ta paliatyvna medytsyna – Rehabilitation and Palliative Medicine, 1 (1), 118-121 [in Ukrainian].

Palchik, A.B., & Shabalov, N.P. (2013). Gipoksicheski-ishemicheskaya entsefalopatiya novorozhdennykh [Finger AB Hypoxic-ischemic encephalopathy of newborns]. Moscow: MEDpress-inform [in Russian].

Gopagondanahalli, K.R., Li, J., Fahey, M.C., Hunt, R.W., Jenkin, G., Miller, S.L., & Malhotra, A. (2016). Preterm hypoxic-ischemic encephalopathy. Front. Pediatr., 4, 114. DOI: 10.3389/fped.2016.00114.

LaRosa, D.A., Ellery, S.J., Walker, D.W., & Dickinson, H. (2017). Understanding the full spectrum of organ injury following intrapartum asphyxia. Front. Pediatr., 5, 16. DOI: 10.3389/fped.2017.00016.

Lundgren, C., Brudin, L., Wanby, A.-S., & Blomberg, M. (2018). Ante- and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J. Matern. Fetal. Neonatal. Med., 31 (12), 1595-1601.

Munoz, D., Hidalgo, M.J., Balut, F., Troncoso, M., Lara, S., Barrios, A., Parra P. (2018). Risk factors for perinatal arterial ischemic stroke: a case-control study. Cell. Med., 10, 2155179018785341. DOI: 10.1177/2155179018785341.

Hirvonen, M., Ojala, R., Korhonen, P., Haataja, P., Eriksson, K., Gissler, M., ..., & Tammela O. (2014). Cerebral palsy among children born moderately and late preterm. Pediatrics, 134 (6), e1584-93. DOI: 10.1542/peds.2014-0945.

Lees, C.C., Marlow, N., van Wassenaer-Leemhuis, A., Arabin, B., Bilardo, C.M., Brezinka, C., …, & Wolf, H. (2015). 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet, 385 (9983), 2162-2172. DOI: 10.1016/S0140-6736(14)62049-3.

Linsell, L., Malouf, R., Morris, J., Kurinczuk, J.J., & Marlow, N. (2016). Prognostic factors for cerebral palsy and motor impairment in children born very preterm or very low birthweight: a systematic review. Dev. Med. Child. Neurol., 58 (6), 554-569. DOI: 10.1111/dmcn.12972.

Oskoui, M., Coutinho, F., Dykeman, J., Jetté, N., & Pringsheim, T. (2013). An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev. Med. Child. Neurol., 55 (6), 509-519. DOI: 10.1111/dmcn.12080.

Stavsky, M., Mor, O., Mastrolia, S.A., Greenbaum, S., Than, N.G., & Erez, O. (2017). Cerebral palsy-trends in epidemology and recent development in prenatal mechanism of disease, treatment and prevention. Front. Pediatr., 5, 21. DOI: 10.3389/fped.2017.00021.

Sellier, E., Platt, M.J., Anderson, G.L., Krägeloh-Mann, I., De La Cruz, J., Cans, C. (2016). Decreasing prevalence in cerebral palsy: a multi-site European population based-study 1980 to 2003. Dev. Med. Child. Neurol., 58 (1), 85-92. DOI: 10.1111/dmcn.12865.

Blume, N.K., Li, C.I., Loch, C.M., & Koepsell, T.D. (2008). Intrapartum fever and chorioamnionitis as risk for encephalopathy in term newborns: a case-control study. Dev. Med. Child. Neurol., 50 (1), 19-24. DOI: 10.1111/j.1469-8749.2007.02007.x.

Galinsky, R., Lear, C.A., Dean, J.M., Wassink, G., Dhillon, S.K., Fraser, M., …, & Gunn, A.J. (2018). Complex interactions between hypoxia-ischemia and inflammation in preterm -brain injury. Dev. Med. Child. Neurol., 60 (2), 126-133. DOI: 10.1111/dmcn.13629.

WHO Reproductive Health Library. WHO recommendation on the use of magnesium sulfate for fetal protection from neurological complications (November 2015). The WHO Reproductive Health Library; Geneva: World Health Organization.

Magee, L., DeSilva, D., Sawchuk, D., & von Dadelszen, P. (2019). SOGC clinical practical guideline. Magnesium sulfate for fetal neuroprotection. J. Obstet. Gynaecol. Can., 41 (4), 505-522. DOI: 10.1016/S1701-2163(16)34886-1.

(2010). Committee Opinion No 455: Magnesium sulfate before anticipated preterm birth for neuroprotection. J. Obset. Gynecol., 115 (3), 669-671. DOI: 10.1097/AOG.0b013e3181d4ffa5.

Klevebro, S., Juu, S.E., & Wood, T. (2020). A more comprehensive approach to the neuroprotective potential of long-chain polyunsaturated fatty acids in preterm infants is needed–should we consider maternal diet and the n-6:n-3 fatty acid ratio? Front. Pediatr., 7, 533. DOI: 10.3389/fped.2019.00533.

Prikhodko, A.M., Kirtbaya, A.R., Romanov, A.Yu., & Bayev, O.R. (2018). Biomarkery povrezhdeniya golovnogo mozga u novorozhdennykh [Biomarkers of brain damage in newborns]. Neonatologiya: novosti, mneniya, obucheniye – Neonatology: News, Opinions, Training, 7 (1), 70-76 [in Russian].

Amer-Wåhlin, I., Herbst, A., Lindoff, C., Thorngren-Jerneck, K., Marsál, K., & Alling, C. (2001). Brain-specific NSE and S-100 proteins in umbilical blood after normal delivery. Clin. Chim. Acta., 304 (1–2), 57-63. DOI: 10.1016/s0009-8981(00)00408-3.

Roka, A., Kelen, D., Halasz, J., Beko, G., Azzopardi, D., & Szabo, M. (2012). Serum S100B and neuron-specific enolase levels in normothermic and hypothermic infants after perinatal asphyxia. Acta. Paediatr., 101 (3), 1184-1188. DOI: 10.1111/j.1651-2227.2011.02480.x.

Published

2021-03-04

How to Cite

Posokhova, S. P., Kucherenko, O. Y., & Nitochko, K. O. (2021). HYPOXIC-ISCHEMIC FETAL BRAIN INJURY: FORECASTING AND PREVENTION. Actual Problems of Pediatrics, Obstetrics and Gynecology, (2), 135–142. https://doi.org/10.11603/24116-4944.2020.2.11852

Issue

Section

OBSTETRICS AND GYNECOLOGY