INSULIN RESISTANCE AND HYPERGLYCEMIA ARE THE MAIN PREDICTORS OF THE COMPLICATED COURSE OF ACUTE MYOCARDIAL INFARCTION IN PATIENTS WITH COMORBID METABOLIC SYNDROME AND TYPE 2 DIABETES
(LITERATURE REVIEW AND OWN DATA)
DOI:
https://doi.org/10.11603/1811-2471.2022.v.i4.13496Keywords:
myocardial infarction, diabetes, metabolic syndrome, insulin resistance, hyperglycemia, arginine, carnitine, dapagliflozinAbstract
SUMMARY. Insulin resistance (IR) plays a significant role in the development of cardiovascular diseases and has an adverse prognostic effect on the course of an acute myocardial infarction (AMI) due to a direct proatherogenic effect and a metabolically damaging effect on the contractile function of the myocardium.
The aim – to determine the role of IR and hyperglycemia as triggers of the complicated course of AMI in patients with type 2 diabetes and MS and to test a comprehensive program for the correction of IR.
Material and Methods. Analysis of literature sources on the problem of IR in AMI. Comprehensive examination of 85 patients with AMI in combination with MS and type 2 diabetes with determination of IR using the NOMA-IR index and the degree of severity of IR by the value of the IR coefficient according to F. Caro.
Results. The majority of comorbid patients (ACS+DM2+MS) (87.5 %) had a complicated course of MI, which was caused by metabolic (energetic) changes in the myocardium and coronary vessels as a result of the additional effects of insulin resistance, hyperglycemia, and hyperinsulinemia. Violation of carbohydrate metabolism in these comorbid patients is evidenced by hyperglycemia, an increase in the NOMA index, and a decrease in the Saro index. Correction of detected hemodynamic disorders by using an arginine/carnitine mixture contributed to the reduction of post-infarction heart remodeling, an increase in PV (by 7 %) and a decrease in the frequency of complications, while complex treatment with the additional inclusion of dapagliflozin significantly improved the impaired carbohydrate metabolism and reduced the level of IR.
Conclusions. Patients with myocardial infarction in combination with type 2 diabetes and metabolic syndrome in the initial state develop pronounced insulin resistance with a violation of carbohydrate metabolism and a decrease in the systolic-diastolic function of the heart, which are a trigger for the development of complications. Complex treatment with the inclusion of a carnitine/arginine mixture and dapagliflozin in these patients helps restore tissue sensitivity to insulin, improve carbohydrate metabolism, and significantly reduce the frequency of complications.
References
Gandziuk, V., Dyachuk, D., & Kondratyuk, N. (2017). Dynamics of morbidity and mortality due to diseases of the circulatory system in Ukraine (regional aspect). Bulletin of Biology and Medicine, 2(136), 319-322.
Gach, O., Husseini, Z., & Lancellotti, P. (2018). Acute coronary syndrome. Rev. Med. Liege, 73(5-6), 243-250.
Ivanyuk, А., & Orlova, N. (2020). Ischemic heart disease among the population of working age in Kyiv region: statistical analysis of the modern epidemiological situation. Reports of Vinnytsia National Medical University [Internet], 24(4), 694-699. DOI: 10.31393/reports-vnmedical-2020-24(4)-24.
Lushchyk, U., Novytskyy, V., & Babii, I. (2012). Predictive and preventive strategies to advance the treatments of cardiovascular and cerebrovascular diseases: the Ukrainian context. EPMA J., 3(1), 12. DOI: 10.1186/1878-5085-3-12.
Pablo-Moreno, J., Serrano, L., & Revuelta, L. (2022). The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int. J. Mol. Sci., 23, 8283. DOI: 10.3390/ijms23158283.
Theofilis, P., Sagris, M., & Oikonomou, E. (2021). Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines, 9, 781.
Petrie, J., Guzik, T., & Touyz, R. (2018). Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol., 34(5), 575-584. DOI: 10.1016/j.cjca.2017.12.005.
Leon, B., & Maddox, T. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes, 6(13), 1246-1258. DOI: 10.4239/wjd.v6.i13.1246.
Ma, C., Ma, X., & Guan, C. (2022). Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc. Diabetol., 21, 74.
Stuart, R., Khan, O., & Abeysuriya, R. (2020). Diabetes care cascade in Ukraine: an analysis of breakpoints and opportunities for improved diabetes outcomes. BMC Health Serv. Res., 20(1), 409. DOI: 10.1186/s12913-020-05261-y.
Al-Aqeedi, R., & Abdullatef, W. (2013). The prevalence of metabolic syndrome components, individually and in combination, in male patients admitted with acute coronary syndrome, without previous diagnosis of diabetes mellitus. Libyan J. Med., 8, 2018-2024.
Twigg, J. (2017). Ukraine’s Health Sector – Sustaining momentum for reform. CSIS Global Health Policy, 12, 236-243.
Zanoli, L., Di Pino, A., & Terranova, V. (2018). Inflammation and ventricular-vascular coupling in hypertensive patients with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis., 28, 1222-1229. DOI: 10.1016/j.numecd.2018.08.003.
Mohammad, G. (2018). The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep., 20(2), 12. DOI: 10.1007/s11906-018-0812-z.
Hamid, A., Bashir, A., DilAfroze, A., & Wani. (2018). Evaluation of Proinflammatory Cytokines in Obese vs Non-obese Patients with Metabolic Syndrome. Indian J. Endocrinol. Metab., 22(6), 751-756. DOI: 10.4103/ijem.IJEM_206_18.
Roberts, C., Hevener, A., & Barnard, R. (2013). Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol., 3, 1-58. DOI: 10.1002/cphy.c110062.
Reaven, G., & Chen, Y. (1996). Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit? Circulation, 93, 1780-1783. DOI: 10.1161/01.cir.93.10.1780.
Petersen, M., & Shulman, G. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev., 98, 2133-2223. DOI:10.1152/physrev.00063.2017.
Chia, C., Egan, J., & Ferrucci L. (2018). Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res., 123, 886-904. DOI: 10.1161/CIRCRESAHA.118.312806.
Huang., X., Liu, G., Guo, J., & Su, Z. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 14, 1483-1496. DOI: 10.7150/ijbs.27173.
Baroni, M., D’Andrea, M., & Montali, A. (1999). A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 19, 2975-2980. DOI:10.1161/01.atv.19.12.2975.
Mambiya, M., Shang, M., & Wang, Y. (2019). The Play of Genes and Non-genetic Factors on Type 2 Diabetes. Front Public Health, 19, 349. DOI: 10.3389/fpubh.2019. 00349.
Janssen, J. (2021). Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. International Journal of Molecular Sciences, 22, 7797. DOI: 10.3390/ijms22157797.
Ginsberg, H., & MacCallum, P. (2009). The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J. Cardiometab. Syndr., 4, 113-119. DOI: 10.1111/j.1559- 4572.2008.00044.x.
Gobato, A., Vasques, A., & Zambon, M. (2014). Metabolic syndrome and insulin resistance in obese adolescents. Rev. Paul. Pediatr., 32, 55-62. DOI: 10.1590/s0103-05822014000100010.
Zhao, J., Wu, Y., & Rong, X. (2020). Anti-Lipolysis Induced by Insulin in Diverse Pathophysiologic Conditions of Adipose Tissue. Diabetes Metab. Syndr. Obes., 11, 1575-1585. DOI: 10.2147/DMSO.S250699.
Al-Suhaimi, E., & Shehzad, A. (2013). Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur. J. Med. Res., 18, 12-17. DOI: 10.1186/2047-783X-18-12.
Kasuga, M. (2006). Insulin resistance and pancreatic beta cell failure. J. Clin. Invest., 116, 1756-1760. DOI: 10.1172/JCI29189.
Sinha, S., & Haque, M. (2022). Insulin Resistance Is Cheerfully Hitched with Hypertension. Life (Basel), 12, 64-71. DOI: 10.3390/life12040564.
Bjornstad, P., & Eckel, R. (2018). Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review. Curr. Diab. Rep., 18, 127-133. DOI: 10.1007/s11892-018-1101-6.
Chen, C., Cohrs, C., & Stertmann, J. (2017). Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab., 6, 943-957. DOI:10.1016/j.molmet.2017.06.019.
Polidori, N., Mainieri, F., & Chiarelli, F. (2022). Early Insulin Resistance, Type 2 Diabetes, and Treatment Options in Childhood. Horm. Res. Paediatr., 95, 149-166. DOI: 10.1159/000521515.
Thomas, D., Corkey, B., & Istfan, N. (2019). Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J. Endocr. Soc., 3, 1727-1747. DOI: 10.1210/js.2019-00065.
Galicia-Garcia, U., Benito-Vicente, A., & Jebari, S. (2020). Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci., 21, 6275-6281. DOI: 10.3390/ijms21176275.
Gao, S., Ma, W., & Huang, S. (2021). Impact of prediabetes on long-term cardiovascular outcomes in patients with myocardial infarction with nonobstructive coronary arteries. Diabetol. Metab. Syndr., 13, 103-109. DOI: 10.1186/s13098-021-00721-9.
Di Pino, A., & DeFronzo, R. (2019). Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr. Rev., 40, 1447-1467. DOI: 10.1210/er.2018-00141.
Brown, J., Gerhardt, T., & Kwon, E. (2022). Risk Factors For Coronary Artery Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 14, 3658-3665.
Radchenko, O., & Korolyuk, O. (2021). Glycated hemoglobin: mechanisms of formation and clinical significance (literature review and own researches). INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 16, 69-75. DOI: 10.22141/2224-0721.16.1.2020.199131.
Förstermann, U., Xia, N., & Li, H. (2017). Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res., 120(4), 713-735. DOI: 10.1161/CIRCRESAHA.116.309326.
Szeiffova, B., Viczenczova, C., & Andelova, K. (2020). Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel), 9(6), 546-551. DOI: 10.3390/antiox9060546.
Okadome, Y., Morinaga, J., & Fukami, H. (2021). Hyperglycemia and Thrombocytopenia - Combinatorially Increase the Risk of Mortality in Patients With Acute Myocardial Infarction Undergoing Veno-Arterial Extracorporeal Membrane Oxygenation. Circ. Rep., 3(12), 707-715. DOI: 10.1253/circrep.CR-21-0043.
Penna, C., Andreadou, I., & Aragno, M. (2020). Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br. J. Pharmacol., 177, 5312-5335. DOI: 10.1111/bph.14993.
Zheng, J., Cheng, J., & Wang, T. (2017). Does HbA1c Level Have Clinical Implications in Diabetic Patients Undergoing Coronary Artery Bypass Grafting? A Systematic Review and Meta-Analysis. Int. J. Endocrinol., 17, 1537-1542. DOI: 10.1155/2017/1537213.
Hinton, W., Feher, M., & Munro, N. (2018). Does Real World Use of Liraglutide Match its Use in the LEADER Cardiovascular Outcome Trial? Study Protocol. Diabetes Ther., 9(3), 1397-1402. DOI: 10.1007/s13300-018-0390-8.
Husain, M., Bain, S., & Jeppesen, O. (2020). Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes. Metab., 22, 442-451. DOI: 10.1111/dom.13955.
(1998). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 352(9131), 854-865.
King, P., Peacock, I., & Donnelly, R. (1999). The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol., 48(5), 643-648. DOI: 10.1046/j.1365-2125.1999.00092.x.
Inzucchi, S., Khunti, K., & Fitchett, D. (2020). Cardiovascular Benefit of Empagliflozin Across the Spectrum of Cardiovascular Risk Factor Control in the EMPA-REG OUTCOME Trial. J. Clin. Endocrinol.Metab., 105(9), 3025-3035. DOI: 10.1210/clinem/dgaa321.
Norhammar, A., Bodegård, J., & Nyström, T. (2019). Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: A nationwide observational study. Diabetes Obes. Metab., 21(5), 1136-1145. DOI: 10.1111/dom.13627.
Berg, D., Jhund, P., & Docherty, K. (2021). Time to Clinical Benefit of Dapagliflozin and Significance of Prior Heart Failure Hospitalization in Patients With Heart Failure With Reduced Ejection Fraction. JAMA Cardiol., 6(5), 499-507. DOI: 10.1001/jamacardio.2020.7585.
Tuna, K., Abdelmasih, R., & Alsamman, M. (2021). Case o fEuglycemic Diabetic Ketoacidosis Following Canagliflozin Therapy. J. Endocr. Soc., 5, 358-362. DOI: 10.1210/jendso/bvab048.729.
Baviera, M., Foresta, A., & Colacioppo, P. (2022). Effectiveness and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in type 2 diabetes: an Italian cohort study. Cardiovasc. Diabetol., 21, 162-169. DOI: 10.1186/s12933-022-01572-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Achievements of Clinical and Experimental Medicine
This work is licensed under a Creative Commons Attribution 4.0 International License.