PATHOPHYSIOLOGY OF PERSISTENT INFLAMMATION, IMMUNOSUPPRESSION AND CATABOLISM SYNDROME

(LITERATURE REVIEW)

Authors

  • S. M. Chuklin Lviv Regional Clinical Hospital
  • S. S. Chuklin Lviv Regional Clinical Hospital
  • G. V. Shershen Lviv Regional Clinical Hospital

DOI:

https://doi.org/10.11603/1811-2471.2020.v.i2.11300

Keywords:

chronic critical illness, inflammation, immunosuppression, catabolism

Abstract

Due to advances in intensive care, the survival rate of critically ill patients has improved dramatically. Currently, many patients are discharged from intensive care units. However, in some of these patients a chronic critical illness develops, which is characterized by persistent low-grade inflammation, depression of immunity and muscle wasting. In 2012, this condition was described as a persistent inflammation, immunosuppression and catabolism syndrome, which can occur after severe trauma and burns, sepsis, necrotizing pancreatitis.

The aim – to define modern views on the mechanisms of development of persistent inflammation, immunosuppression and catabolism syndrome.

Material and Methods. The search for literature sources was carried out on the basis of MEDLINE.

Results. Expansion of myeloid-derived suppressor cells, deregulation in innate and adaptive immunity, the development of sarcopenia are the main pathophysiological mechanisms of chronic critical illness after severe inflammatory processes.

Conclusion. The persistent inflammation, immunosuppression, and catabolism syndrome provides an explanation of the underlying pathophysiological mechanisms in chronic critical illness. This is the basis for determining pathogenetically targeted treatment, which should be multimodal and focus on interrupting the inflammation/immunosuppression cycle.

References

Gentile, L.F., Cuenca, A.G., Efron, P.A., Ang, D., Bihorac, A., McKinley, B.A., Moldawer, L.L., & Moore, F.A. (2012). Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. Journal of Trauma and Acute Care Surgery, 72(6), 1491-1501. DOI: 10.1097/TA.0b013e318256e000 DOI: https://doi.org/10.1097/TA.0b013e318256e000

Kratofil, R.M., Kubes, P., & Deniset, J.F. (2017). Mono­cyte conversion during inflammation and injury. Arte­riosclerosis, Thrombosis, and Vascular Biology, 37 (1), 35-42. DOI: 10.1161/ATVBAHA.116.308198 DOI: https://doi.org/10.1161/ATVBAHA.116.308198

Mitroulis, I., Kalafati L., Hajishengallis, G., & Chavakis, T. (2018). Myelopoiesis in the context of innate immunity. Journal of Innate Immunity, 10 (5-6), 365-372. DOI: 10.1159/000489406 DOI: https://doi.org/10.1159/000489406

De Filippo, K., & Rankin, S.M. (2018). CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. European Journal of Clinical Investigation, 48 (2), e12949. DOI: 10.1111/eci.12949 DOI: https://doi.org/10.1111/eci.12949

David, B.A., & Kubes, P. (2019). Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics. Immunological Reviews, 289(1), 9-30. DOI: 10.1111/imr.12757 DOI: https://doi.org/10.1111/imr.12757

Kazi, J.U., & Rönnstrand, L. (2019). FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiological Reviews, 99 (3), 1433-1466. DOI: 10.1152/physrev.00029.2018. DOI: https://doi.org/10.1152/physrev.00029.2018

Nacionales, D.C., Szpila, B., Ungaro, R., Lopez, M.C., Zhang J., Gentile, L.F., Efron, P.A. (2015). A detailed cha­racterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. Journal of Immunology, 195 (5), 2396-2407. DOI:10.4049/jimmunol.1500984 DOI: https://doi.org/10.4049/jimmunol.1500984

Chandra, R., Villanueva, E., Feketova, E., Machiedo, G.W., Hasko, G., Deitch, E.A., & Spolarics, Z. (2008). Endotoxemia down-regulates bone marrow lympho­poiesis but stimulates myelopoiesis: the effect of G6PD deficiency. Journal of Leukocyte Biology, 83(6), 1541-1550. DOI:10.1189/jlb.1207838 DOI: https://doi.org/10.1189/jlb.1207838

Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly-Scumpia, K.M., ... Moldawer, L.L. (2007). MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 204 (6), 1463-1474. DOI:10.1084/jem.20062602 DOI: https://doi.org/10.1084/jem.20062602

Talmadge, J.E., & Gabrilovich, D.I. (2013). History of myeloid-derived suppressor cells. Nature Reviews Cancer, 13 (10), 739-752. DOI: 10.1038/nrc3581 DOI: https://doi.org/10.1038/nrc3581

Goldszmid, R.S., Dzutsev, A., & Trinchieri, G. (2014). Host immune response to infection and cancer: Unexpec­ted commonalities. Cell Host & Microbe, 15(3), 295-305. DOI: 10.1016/j.chom.2014.02.003 DOI: https://doi.org/10.1016/j.chom.2014.02.003

Manz, M.G., & Boettcher, S. (2014). Emergency granu­lopoiesis. Nature Reviews Immunology, 14 (5), 302-314. DOI: 10.1038/nri3660 DOI: https://doi.org/10.1038/nri3660

Mira, J.C., Brakenridge, S.C., Moldawer, L.L., & Moore, F.A. (2017). Persistent inflammation, immuno­suppression and catabolism syndrome. Critical Care Clinics, 33 (2), 245-258. DOI: 10.1016/j.ccc.2016.12.001 DOI: https://doi.org/10.1016/j.ccc.2016.12.001

Esher, S.K., Fidel, P.L. Jr., & Noverr, M.C. (2019). Candida/Staphylococcal polymicrobial intra-abdominal infection: Pathogenesis and perspectives for a novel form of trained innate immunity. Journal of Fungi, 5 (2), E37. DOI: 10.3390/jof5020037. DOI: https://doi.org/10.3390/jof5020037

Fraenkel, P.G. (2017). Anemia of inflammation: a review. Medical Clinics of North America, 101 (2), 285-296. DOI: 10.1016/j.mcna.2016.09.005 DOI: https://doi.org/10.1016/j.mcna.2016.09.005

Mira, J.C., Gentile, L.F., Mathias, B.J., Efron, P.A., Brakenridge, S.C., Mohr, A.M., ... Moldawer, L.L. (2017). Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Critical Care Medicine, 45 (2), 253-262. DOI: 10.1097/CCM.0000000000002074 DOI: https://doi.org/10.1097/CCM.0000000000002074

Alamo, I.G., Kannan, K.B., Bible, L.E., Loftus, T.J., Ramos, H., Efron, P.A., & Mohr, A.M. (2017). Daily propra­nolol administration reduces persistent injury-associated anemia after severe trauma and chronic stress. Journal of Trauma and Acute Care Surgery, 82 (4), 714-721. DOI: 10.1097/TA.0000000000001374 DOI: https://doi.org/10.1097/TA.0000000000001374

Mathias, B., Delmas, A.L., Ozrazgat-Baslanti, T., Vanzant, E.L., Szpila, B.E., Mohr, A.M., ... the Sepsis, Critical Illness Research Center Investigators. (2017). Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Annals Surgery, 265 (4), 827-834. DOI: 10.1097/SLA.0000000000001783 DOI: https://doi.org/10.1097/SLA.0000000000001783

Lai, D., Qin, C., & Shu, Q. (2014). Myeloid-derived suppressor cells in sepsis. BioMed Research International, 2014, 598654. DOI: 10.1155/2014/598654 DOI: https://doi.org/10.1155/2014/598654

Lei, G.S., Zhang, C., & Lee, C.H. (2015). Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infection and Immunity, 83 (2), 572-582. DOI: 10.1128/IAI.02686-14 DOI: https://doi.org/10.1128/IAI.02686-14

Hotchkiss, R.S., Moldawer, L.L., Opal, S.M., Reinhart, K., Turnbull, I.R., & Vincent J.L. (2016). Sepsis and septic shock. Nature Reviews Disease Primers, 2, 16045. DOI: 10.1038/nrdp.2016.45 DOI: https://doi.org/10.1038/nrdp.2016.45

Brudecki, L., Ferguson, D.A., McCall, C.E., & El Gazzar, M. (2012). Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infection and Immunity, 80 (6), 2026-2034. DOI: 10.1128/IAI.00239-12 DOI: https://doi.org/10.1128/IAI.00239-12

Gielen, P.R., Schulte, B.M., Kers-Rebel, E.D., Verrijp, K., Bossman, S.A., Ter Laan, M., ... Adema, G.J. (2016). Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro-Oncology, 18 (9), 1253-1264. DOI: 10.1093/neuonc/now034 DOI: https://doi.org/10.1093/neuonc/now034

Uhel, F., Azzaoui, I., Grégoire, M., Pangault, C., Dulong, J., Tadié, J.M., ... Tarte, K. (2017). Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. American Journal of Respiratory and Critical Care Medicine, 196 (30), 315-327. DOI: 10.1164/rccm.201606-1143OC DOI: https://doi.org/10.1164/rccm.201606-1143OC

Schrijver, I.T., Théroude, C., & Roger, T. (2019). Myeloid-derived suppressor cells in sepsis. Frontiers in Immunology, 10, 327. DOI: 10.3389/fimmu.2019.00327. DOI: https://doi.org/10.3389/fimmu.2019.00327

Rosenthal, M.D., Kamel, A.Y., Rosenthal, C.M., Brakenridge, S., Croft, C.A., & Moore, F.A. (2018). Chronic critical illness: Application of what we know. Nutrition in Clinical Practice, 33(1), 39-45. DOI: 10.1002/ncp.10024. DOI: https://doi.org/10.1002/ncp.10024

Timmermans, K., Kox, M., Scheffer, G.J., & Pickkers, P. (2016). Danger in the Intensive Care Unit: DAMPs in critically Ill patients. Shock, 45 (2), 108-116. DOI: 10.1097/SHK.0000000000000506 DOI: https://doi.org/10.1097/SHK.0000000000000506

Stortz, J.A., Raymond, S.L., Mira, J.C., Molda­wer, L.L., Mohr, A.M., & Efron, P.A. (2017). Murine models of sepsis and trauma: can we bridge the gap? ILAR Journal, 58 (1), 90-105. DOI: 10.1093/ilar/ilx007 DOI: https://doi.org/10.1093/ilar/ilx007

Kang, J.W., Kim, S.J., Cho, H.I., & Lee, S.M. (2015). DAMPs activating innate immune responses in sepsis. Ageing Research Reviews, 24(Pt A), 54-65. DOI: 10.1016/j.arr.2015.03.003 DOI: https://doi.org/10.1016/j.arr.2015.03.003

Stortz, J.A., Murphy, T.J., Raymond, S.L., Mira, J.C., Ungaro, R., Dirain, M.L., ... Brakenridge S.C. (2017). Evidence for persistent immune suppression in patients WHO develop chronic critical illness after sepsis. Shock, 49 (3), 249-258. DOI: 10.1097/SHK.0000000000000981 DOI: https://doi.org/10.1097/SHK.0000000000000981

Walton, A.H., Muenzer, J.T., Rasche, D., Boomer, J.S., Sato, B., Brownstein, B.H., ... Hotchkiss, R.S. (2014). Reactivation of multiple viruses in patients with sepsis. PLoS One, 9 (2), e98819. DOI: 10.1371/journal.pone.0098819 DOI: https://doi.org/10.1371/journal.pone.0098819

Hu, Q., Ren, J., Wu, J., Li, G., Wu, X., Liu, S., ... Li J. (2017). Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma. Surgical Infections, 18 (5), 610-618. DOI: 10.1089/sur.2016.276 DOI: https://doi.org/10.1089/sur.2016.276

Peltz, E.D., Moore, E.E., Eckels, P.C., Damle, S.S., Tsuruta, Y., Johnson, J.L., ... Abraham, E. (2009). HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock, 32 (1), 17-22. DOI: 10.1097/shk.0b013e3181997173 DOI: https://doi.org/10.1097/SHK.0b013e3181997173

Hauser, C.J., & Otterbein, L.E. (2018). Danger signals from mitochondrial DAMPS in trauma and post-injury sepsis. European Journal of Trauma and Emergency Surgery, 44 (3), 317-324. DOI: 10.1007/s00068-018-0963-2. DOI: https://doi.org/10.1007/s00068-018-0963-2

Dzieciatkowska, M., Wohlauer, M.V., Moore, E.E., Damle, S., Peltz, E., Campsen, J., ... Hansen, K.C. (2011). Proteomic analysis of human mesenteric lymph. Shock, 35 (4), 331-338. DOI: 10.1097/SHK.0b013e318206f654 DOI: https://doi.org/10.1097/SHK.0b013e318206f654

Lee, S.K., & Ding, J.L. (2013). A perspective on the role of extracellular hemoglobin on the innate immune system. DNA and Cell Biology, 32 (2), 36-40. DOI: 10.1089/dna.2012.1897 DOI: https://doi.org/10.1089/dna.2012.1897

Fischer, S. (2018). Pattern recognition receptors and control of innate immunity: Role of nucleic acids. Current Pharmaceutical Biotechnology, 19 (15), 1203-1209. DOI: 10.2174/138920112804583087. DOI: https://doi.org/10.2174/138920112804583087

Fitzgerald, K.A., & Kagan, J.C. (2020). Toll-like receptors and the control of immunity. Cell, 180 (6), 1044-1066. DOI: 10.1016/j.cell.2020.02.041 DOI: https://doi.org/10.1016/j.cell.2020.02.041

Tartey, S., & Takeuchi, O. (2017). Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. International Reviews of Immunology, 36 (2), 57-73. DOI: 10.1080/08830185.2016.1261318 DOI: https://doi.org/10.1080/08830185.2016.1261318

Xiao, W., Mindrinos, M.N., Seok, J., Cuschieri, J., Cuenca, A.G., Gao, H., ... Inflammation and host response to injury large-scale collaborative research program. (2011). A genomic storm in critically injured humans. Journal of Experimental Medicine, 208 (13), 2581-2590. DOI: 10.1084/jem.20111354 DOI: https://doi.org/10.1084/jem.20111354

Nomellini, V., Gomez, C.R., & Kovacs, E.J. (2008). Aging and impairment of innate immunity. Contribution to Microbiology, 15, 188-205. DOI: 10.1159/000136358 DOI: https://doi.org/10.1159/000136358

de Oliveira, D.C., Hastreiter, A.A., Mello, A.S., de Oliveira Beltran, J.S., Oliveira Santos, E.W., Borelli, P., & Fock, R.A. (2014). The effects of protein malnutrition on the TNF-RI and NF-kappaB expression via the TNF-alpha signaling pathway. Cytokine, 69 (2), 218-225. DOI: 10.1016/j.cyto.2014.06.004 DOI: https://doi.org/10.1016/j.cyto.2014.06.004

Ghnewa, Y.G., Fish, M., Jennings, A., Carter, M.J., & Shankar-Hari, M. (2020). Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction. Medizinische Klinik – Intensivmedizin und Notfallmedizin, 115 (1), 10-14. DOI: 10.1007/s00063-020-00683-2 DOI: https://doi.org/10.1007/s00063-020-00683-2

Wang, Y., Ouyang, Y., Liu, B., Ma, X., & Ding R. (2018). Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thrombosis Research, 166, 28-36. DOI: 10.1016/j.thromres.2018.04.007 DOI: https://doi.org/10.1016/j.thromres.2018.04.007

Bihorac, A., Brennan, M., Ozrazgat-Baslanti, T., Bozorgmehri, S., Efron, P.A., Moore, F.A., ... Hobson, C.E. (2013). National surgical quality improvement program underestimates the risk associated with mild and moderate postoperative acute kidney injury. Critical Care Medicine, 41 (11), 2570-2583. DOI: 10.1097/CCM.0b013e31829860fc DOI: https://doi.org/10.1097/CCM.0b013e31829860fc

Jansen, M.P.B., Pulskens, W.P., Butter, L.M., Flor­quin, S., Juffermans, N.P., Roelofs, J.J.T.H., & Leemans, J.C. (2017). Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock, 49 (3), 301-310. DOI: 10.1097/SHK.0000000000000967 DOI: https://doi.org/10.1097/SHK.0000000000000967

Allam, R., Scherbaum, C.R., Darisipudi, M.N., Mulay, S.R., Hägele, H., Lichtnekert, J., ... Anders, H.J. (2012). Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. Journal of the American Society of Nephro­logy, 23 (8), 1375-1388. DOI: 10.1681/ASN.2011111077 DOI: https://doi.org/10.1681/ASN.2011111077

Lelubre, C., & Vincent, J.L. (2018). Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology, 14 (7), 417-427. DOI: 10.1038/s41581-018-0005-7 DOI: https://doi.org/10.1038/s41581-018-0005-7

Zager, R.A., Johnson, A.C., Lund, S., & Hanson, S. (2006). Acute renal failure: determinants and characte­ristics of the injury-induced hyperinflammatory response. American Journal Physiology – Renal Physiology, 291 (3), 546-556. DOI: 10.1152/ajprenal.00072.2006 DOI: https://doi.org/10.1152/ajprenal.00072.2006

Tryggvason, K., & Wartiovaara, J. (2005). How does the kidney filter plasma? Physiology, 20, 96-101. DOI: 10.1152/physiol.00045.2004 DOI: https://doi.org/10.1152/physiol.00045.2004

Qiu, Y., Tu, G.W., Ju, M.J., Yang, C., & Luo, Z. (2019). The immune system regulation in sepsis: From innate to adaptive. Current Protein and Peptide Science, 20(8), 799-816. DOI: 10.2174/1389203720666190305164128 DOI: https://doi.org/10.2174/1389203720666190305164128

Zhu, Y., Deng, J., Nan, M.L., Zhang, J., Okekunle, A., Li, J.Y., ... Wang, P.H. (2019). The interplay between pattern recognition receptors and autophagy in inflammation. Advances in Experimental Medicine and Biology, 1209, 79-108. DOI: 10.1007/978-981-15-0606-2_6 DOI: https://doi.org/10.1007/978-981-15-0606-2_6

Bauer, M., & Wetzker, R. (2020). The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Medizinische Klinik – Intensivmedizin und Notfallmedizin, 115 (1), 4-9. DOI: 10.1007/s00063-020-00673-4 DOI: https://doi.org/10.1007/s00063-020-00673-4

Rimmelé, T., Payen, D., Cantaluppi, V., Marshall, J., Gomez, H., Gomez, A., ... Kellum, J.A. (2016). Immune cell phenotype and function in sepsis. Shock, 45(3), 282-291. DOI: 10.1097/SHK.0000000000000495 DOI: https://doi.org/10.1097/SHK.0000000000000495

Jeschke, M.G., Mlcak, R.P., Finnerty, C.C., Norbury, W.B., Gauglitz, G.G., Kulp, G.A., & Herndon, D.N. (2007). Burn size determines the inflammatory and hypermetabolic response. Critical Care, 11(4), R90. DOI: 10.1186/cc6102 DOI: https://doi.org/10.1186/cc6102

Vourc’h, M., Roquilly, A., & Asehnoune, K. (2018). Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely ill patient. Frontiers in Immunology, 9, 1330. DOI: 10.3389/fimmu.2018.01330 DOI: https://doi.org/10.3389/fimmu.2018.01330

Rea, I.M., Gibson, D.S., McGilligan, V., McNerlan, S.E., Alexander, H.D., & Ross, O.A. (2018). Age and age-related diseases: Role of inflammation triggers and cytokines. Frontiers in Immunology, 9, 586. DOI: 10.3389/fimmu.2018.00586 DOI: https://doi.org/10.3389/fimmu.2018.00586

Lambden, S., Creagh-Brown, B.C., Hunt, J., Summers, C., & Forni, L.G. (2018). Definitions and pathophy­siology of vasoplegic shock. Critical Care, 22(1), 174. DOI: 10.1186/s13054-018-2102-1 DOI: https://doi.org/10.1186/s13054-018-2102-1

Alves-Filho, J.C., de Freitas, A., Spiller, F., Souto, F.O., & Cunha, F.Q. (2008). The role of neutrophils in severe sepsis. Shock, 30 (1), 3-9. DOI: 10.1097/SHK.0b013e3181818466 DOI: https://doi.org/10.1097/SHK.0b013e3181818466

Peters van Ton, A.M., Kox, M., Abdo, W.F., & Pickkers, P. (2018). Precision Immunotherapy for Sepsis. Frontiers in Immunology, 9, 1926. DOI: 10.3389/fimmu.2018.01926 DOI: https://doi.org/10.3389/fimmu.2018.01926

Zhuang, Y., Peng, H., Chen, Y., Zhou, S., & Chen, Y. (2017). Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Frontiers in Bioscience, 22, 1344-1354. DOI: 10.2741/4547 DOI: https://doi.org/10.2741/4547

Livingston, D.H., Appel, S.H., Wellhausen, S.R., Sonnenfeld, G., & Polk, H.C. Jr. (1988). Depressed interferon gamma production and monocyte HLA-DR expression after severe injury. Archives of Surgery, 123 (11), 1309-1312. DOI: 10.1001/archsurg.1988.01400350023002 DOI: https://doi.org/10.1001/archsurg.1988.01400350023002

Gouel-Chéron, A., Allaouchiche, B., Guignant, C., Davin, F., Floccard, B., Monneret, G., & AzuRea Group. (2012). Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: a powerful association to predict the development of sepsis after major trauma. PLoS One, 7 (3), e33095. DOI: 10.1371/journal.pone.0033095 DOI: https://doi.org/10.1371/journal.pone.0033095

Monneret, G., Lepape, A., Voirin, N., Bohé, J., Venet, F., Debard, A.L., ... Vanhems, P. (2006). Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Medicine, 32 (8), 1175-1183. DOI: 10.1007/s00134-006-0204-8 DOI: https://doi.org/10.1007/s00134-006-0204-8

Wakeley, M.E., Gray, C.C., Monaghan, S.F., Heffernan, D.S., & Ayala, A. (2020). Check Point Inhibitors and Their Role in Immunosuppression in Sepsis. Critical Care Clinics, 36 (1), 69-88. DOI: 10.1016/j.ccc.2019.08.006 DOI: https://doi.org/10.1016/j.ccc.2019.08.006

Venet, F., Rimmelé, T., & Monneret, G. (2018). Ma­na­gement of sepsis-induced immunosuppression. Cri­ical Care Clinics, 34 (1), 97-106. DOI: 10.1016/j.ccc.2017.08.007. DOI: https://doi.org/10.1016/j.ccc.2017.08.007

Kovach, M.A., & Standiford, T.J. (2012). The func­tion of neutrophils in sepsis. Current Opinion in Infectious Diseases, 25 (3), 321-327. DOI: 10.1097/QCO.0b013e3283528c9b DOI: https://doi.org/10.1097/QCO.0b013e3283528c9b

Demaret, J., Venet, F., Friggeri, A., Cazalis, M.A., Plassais, J., Jallades, L., ... Monneret, G. (2015). Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology, 98 (6), 1081-1090. DOI: 10.1189/jlb.4A0415-168RR DOI: https://doi.org/10.1189/jlb.4A0415-168RR

Guo, Y., Patil, N.K., Luan, L., Bohannon, J.K., & Sherwood, E.R. (2018). The biology of natural killer cells during sepsis. Immunology, 153 (2), 190-202. DOI: 10.1111/imm.12854. DOI: https://doi.org/10.1111/imm.12854

Hohlstein, P., Gussen, H., Bartneck, M., Warzecha, K.T., Roderburg, C., Buendgens, L., ... Tacke, F. (2019). Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. Journal of Clinical Medicine, 8 (3), E353. DOI: 10.3390/jcm8030353 DOI: https://doi.org/10.3390/jcm8030353

Xue, M., Xie, J., Liu, L., Huang, Y., Guo, F., Xu, J., ... Qiu, H. (2019). Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study. Journal of Translational Medicine, 17 (1), 57. DOI: 10.1186/s12967-019-1811-9. DOI: https://doi.org/10.1186/s12967-019-1811-9

Walz, C.R., Zedler, S., Schneider, C.P., Mayr, S., Loehe, F., Bruns, C.J., ... Angele, M.K. (2007). Depressed T cell-derived IFN-gamma following trauma-hemorrhage: a potential mechanism for diminished APC responses. Langenbeck’s Archives of Surgery, 392 (3), 339-343. DOI: 10.1007/s00423-007-0164-7 DOI: https://doi.org/10.1007/s00423-007-0164-7

Ni, L., & Lu, J. (2018). Interferon gamma in cancer immunotherapy. Cancer Medicine, 7(9), 4509-4516. DOI: 10.1002/cam4.1700. DOI: https://doi.org/10.1002/cam4.1700

Albertsmeier, M., Quaiser, D., von Dossow-Hanfs­tingl, V., Winter, H., Faist, E., & Angele, M.K. (2015). Major surgical trauma differentially affects T-cells and APC. Innate Immunity, 21 (1), 55-64. DOI: 10.1177/1753425913516659 DOI: https://doi.org/10.1177/1753425913516659

Pauken, K.E., & Wherry, E.J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immuno­logy, 36 (4), 265-276. DOI: 10.1016/j.it.2015.02.008 DOI: https://doi.org/10.1016/j.it.2015.02.008

Ruhrmann, S., Schneck, E., Markmann, M., Zink, J., Zajonz, T.S., Arens, C, ... Koch, C. (2020). Trauma-induced long-term alterations of human T cells and monocytes-results of an explorative, cross-sectional study. Shock, 53 (1), 35-42. DOI: 10.1097/SHK.0000000000001358 DOI: https://doi.org/10.1097/SHK.0000000000001358

Chakraborty, S., Karasu, E., & Huber-Lang, M. (2018). Complement after trauma: Suturing innate and adaptive immunity. Frontiers in Immunology, 9, 2050. DOI: 10.3389/fimmu.2018.02050. DOI: https://doi.org/10.3389/fimmu.2018.02050

Mira, J.C., Cuschieri, J., Ozrazgat-Baslanti, T., Wang, Z., Ghita, G.L., Loftus, T.J., ... Brakenridge, S.C. (2017). The epidemiology of chronic critical illness after severe traumatic injury at two level-one trauma centers. Critical Care Medicine, 45 (12), 1989-1996. DOI: 10.1097/CCM.0000000000002697 DOI: https://doi.org/10.1097/CCM.0000000000002697

Fielding, R.A., Vellas, B., Evans, W.J., Bhasin, S., Morley, J.E., Newman, A.B., ... Zamboni M. (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequen­ces. International working group onsarcopenia. Journal of American Medical Directors Association, 12 (4), 249-256. DOI: 10.1016/j.jamda.2011.01.003 DOI: https://doi.org/10.1016/j.jamda.2011.01.003

Saini, A., Faulkner, S., Al-Shanti, N., & Stewart, C. (2009). Powerful signals for weak muscles. Ageing Research Reviews, 8 (4), 251-267. DOI: 10.1016/j.arr.2009.02.001 DOI: https://doi.org/10.1016/j.arr.2009.02.001

Krüger, K. (2017). The increasing importance of immune regulatory effects by physical activity. Deutsche Zeitschrift für Sportmedizin, 68 (12), 277-279. DOI:10.5960/dzsm.2017.308 DOI: https://doi.org/10.5960/dzsm.2017.308

Morley, J.E., Baumgartner, R.N., Roubenoff, R., Mayer, J., & Nair, K.S. (2001). Sarcopenia. Journal of Laboratory and Clinical Medicine, 137 (4), 231-243. DOI: 10.1067/mlc.2001.113504 DOI: https://doi.org/10.1067/mlc.2001.113504

Jones, T.E., Stephenson, K.W., King, J.G., Knight, K.R., Marshall, T.L., & Scott, W.B. (2009). Sarcopenia – mechanisms and treatments. Journal of Geriatric Physical Therapy, 32 (2), 83-89. PMID: 20039588 DOI: https://doi.org/10.1519/00139143-200932020-00008

Schaper, F., & Rose-John, S. (2015). Interleukin-6: Biology, signaling and strategies of blockade. Cytokine and Growth Factor Reviews, 26 (5), 475-487. DOI: 10.1016/j.cytogfr.2015.07.004 DOI: https://doi.org/10.1016/j.cytogfr.2015.07.004

Bano, G., Trevisan, C., Carraro, S., Solmi, M., Luchini, C., Stubbs, B., ... Veronese, N. (2017). Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas, 96, 10-15. DOI: 10.1016/j.maturitas.2016.11.006 DOI: https://doi.org/10.1016/j.maturitas.2016.11.006

Haddad, F., Zaldivar, F., Cooper, D.M., & Adams, G.R. (2005). IL-6-induced skeletal muscle atrophy. Journal of Applied Physiology, 98 (3), 911-917. DOI: 10.1152/japplphysiol.01026.2004 DOI: https://doi.org/10.1152/japplphysiol.01026.2004

Tsujinaka, T., Fujita, J., Ebisui, C., Yano, M., Kominami, E., Suzuki, K., ... Monden, M. (1996). Interleukin 6 receptor antibody inhibits muscle atrophy and mo­dulates proteolytic systems in interleukin 6 transgenic mice. Journal of Clinical Investigation, 97 (1), 244-249. DOI: 10.1172/JCI118398 DOI: https://doi.org/10.1172/JCI118398

Williams A., Wang J.J., & Wang L. (1998). Sepsis in mice stimulates muscle proteolysis in the absence of IL-6. Am. J. Physiol., 275, 1983-1991. DOI: https://doi.org/10.1152/ajpregu.1998.275.6.R1983

Picca, A., Lezza, A.M.S., Leeuwenburgh, C., Pesce, V., Calvani, R., Landi, F., ... Marzetti, E. (2017). Fueling inflammaging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences, 18 (5), E933. DOI: 10.3390/ijms18050933 DOI: https://doi.org/10.3390/ijms18050933

Batt, J., dos Santos, C.C., Cameron, J.I., & Herridge, M.S. (2013). Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. American Journal of Respiratory and Critical Care Medicine, 187 (3), 238-246. DOI 10.1164/rccm.201205-0954SO DOI: https://doi.org/10.1164/rccm.201205-0954SO

Matthias, N., Hunt, S.D., Wu, J., Lo, J., Smith Callahan, L.A., Li, Y., ... Darabi R. (2018). Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Research, 27. 65-73. DOI: 10.1016/j.scr.2018.01.008 DOI: https://doi.org/10.1016/j.scr.2018.01.008

Picca, A., Lezza, A.M.S., Leeuwenburgh, C., Pesce, V., Calvani, R., Bossola, M., ... Marzetti, E. (2018). Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders. Rejuvenation Research, 21 (4), 350-359. DOI: 10.1089/rej.2017.1989 DOI: https://doi.org/10.1089/rej.2017.1989

Picca, A., Pesce, V., Fracasso, F., Joseph, A.M., Leeuwenburgh, C., & Lezza, A.M. (2014). A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochimica et Biophysica Acta, 1840 (7), 2184-2191. DOI: 10.1016/j.bbagen.2014.03.004 DOI: https://doi.org/10.1016/j.bbagen.2014.03.004

Yao, X., Carlson, D., Sun, Y., Ma, L., Wolf, S.E., Minei, J.P., & Zang, Q.S. (2015). Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One, 10 (10), e0139416. DOI: 10.1371/journal.pone.0139416 DOI: https://doi.org/10.1371/journal.pone.0139416

Published

2020-08-14

How to Cite

Chuklin, S. M., Chuklin, S. S., & Shershen, G. V. (2020). PATHOPHYSIOLOGY OF PERSISTENT INFLAMMATION, IMMUNOSUPPRESSION AND CATABOLISM SYNDROME: (LITERATURE REVIEW). Achievements of Clinical and Experimental Medicine, (2), 21–34. https://doi.org/10.11603/1811-2471.2020.v.i2.11300

Issue

Section

Огляд літератури