PATHOPHYSIOLOGY OF PERSISTENT INFLAMMATION, IMMUNOSUPPRESSION AND CATABOLISM SYNDROME
(LITERATURE REVIEW)
DOI:
https://doi.org/10.11603/1811-2471.2020.v.i2.11300Keywords:
chronic critical illness, inflammation, immunosuppression, catabolismAbstract
Due to advances in intensive care, the survival rate of critically ill patients has improved dramatically. Currently, many patients are discharged from intensive care units. However, in some of these patients a chronic critical illness develops, which is characterized by persistent low-grade inflammation, depression of immunity and muscle wasting. In 2012, this condition was described as a persistent inflammation, immunosuppression and catabolism syndrome, which can occur after severe trauma and burns, sepsis, necrotizing pancreatitis.
The aim – to define modern views on the mechanisms of development of persistent inflammation, immunosuppression and catabolism syndrome.
Material and Methods. The search for literature sources was carried out on the basis of MEDLINE.
Results. Expansion of myeloid-derived suppressor cells, deregulation in innate and adaptive immunity, the development of sarcopenia are the main pathophysiological mechanisms of chronic critical illness after severe inflammatory processes.
Conclusion. The persistent inflammation, immunosuppression, and catabolism syndrome provides an explanation of the underlying pathophysiological mechanisms in chronic critical illness. This is the basis for determining pathogenetically targeted treatment, which should be multimodal and focus on interrupting the inflammation/immunosuppression cycle.
References
Gentile, L.F., Cuenca, A.G., Efron, P.A., Ang, D., Bihorac, A., McKinley, B.A., Moldawer, L.L., & Moore, F.A. (2012). Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. Journal of Trauma and Acute Care Surgery, 72(6), 1491-1501. DOI: 10.1097/TA.0b013e318256e000 DOI: https://doi.org/10.1097/TA.0b013e318256e000
Kratofil, R.M., Kubes, P., & Deniset, J.F. (2017). Monocyte conversion during inflammation and injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 37 (1), 35-42. DOI: 10.1161/ATVBAHA.116.308198 DOI: https://doi.org/10.1161/ATVBAHA.116.308198
Mitroulis, I., Kalafati L., Hajishengallis, G., & Chavakis, T. (2018). Myelopoiesis in the context of innate immunity. Journal of Innate Immunity, 10 (5-6), 365-372. DOI: 10.1159/000489406 DOI: https://doi.org/10.1159/000489406
De Filippo, K., & Rankin, S.M. (2018). CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. European Journal of Clinical Investigation, 48 (2), e12949. DOI: 10.1111/eci.12949 DOI: https://doi.org/10.1111/eci.12949
David, B.A., & Kubes, P. (2019). Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics. Immunological Reviews, 289(1), 9-30. DOI: 10.1111/imr.12757 DOI: https://doi.org/10.1111/imr.12757
Kazi, J.U., & Rönnstrand, L. (2019). FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiological Reviews, 99 (3), 1433-1466. DOI: 10.1152/physrev.00029.2018. DOI: https://doi.org/10.1152/physrev.00029.2018
Nacionales, D.C., Szpila, B., Ungaro, R., Lopez, M.C., Zhang J., Gentile, L.F., Efron, P.A. (2015). A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. Journal of Immunology, 195 (5), 2396-2407. DOI:10.4049/jimmunol.1500984 DOI: https://doi.org/10.4049/jimmunol.1500984
Chandra, R., Villanueva, E., Feketova, E., Machiedo, G.W., Hasko, G., Deitch, E.A., & Spolarics, Z. (2008). Endotoxemia down-regulates bone marrow lymphopoiesis but stimulates myelopoiesis: the effect of G6PD deficiency. Journal of Leukocyte Biology, 83(6), 1541-1550. DOI:10.1189/jlb.1207838 DOI: https://doi.org/10.1189/jlb.1207838
Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly-Scumpia, K.M., ... Moldawer, L.L. (2007). MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 204 (6), 1463-1474. DOI:10.1084/jem.20062602 DOI: https://doi.org/10.1084/jem.20062602
Talmadge, J.E., & Gabrilovich, D.I. (2013). History of myeloid-derived suppressor cells. Nature Reviews Cancer, 13 (10), 739-752. DOI: 10.1038/nrc3581 DOI: https://doi.org/10.1038/nrc3581
Goldszmid, R.S., Dzutsev, A., & Trinchieri, G. (2014). Host immune response to infection and cancer: Unexpected commonalities. Cell Host & Microbe, 15(3), 295-305. DOI: 10.1016/j.chom.2014.02.003 DOI: https://doi.org/10.1016/j.chom.2014.02.003
Manz, M.G., & Boettcher, S. (2014). Emergency granulopoiesis. Nature Reviews Immunology, 14 (5), 302-314. DOI: 10.1038/nri3660 DOI: https://doi.org/10.1038/nri3660
Mira, J.C., Brakenridge, S.C., Moldawer, L.L., & Moore, F.A. (2017). Persistent inflammation, immunosuppression and catabolism syndrome. Critical Care Clinics, 33 (2), 245-258. DOI: 10.1016/j.ccc.2016.12.001 DOI: https://doi.org/10.1016/j.ccc.2016.12.001
Esher, S.K., Fidel, P.L. Jr., & Noverr, M.C. (2019). Candida/Staphylococcal polymicrobial intra-abdominal infection: Pathogenesis and perspectives for a novel form of trained innate immunity. Journal of Fungi, 5 (2), E37. DOI: 10.3390/jof5020037. DOI: https://doi.org/10.3390/jof5020037
Fraenkel, P.G. (2017). Anemia of inflammation: a review. Medical Clinics of North America, 101 (2), 285-296. DOI: 10.1016/j.mcna.2016.09.005 DOI: https://doi.org/10.1016/j.mcna.2016.09.005
Mira, J.C., Gentile, L.F., Mathias, B.J., Efron, P.A., Brakenridge, S.C., Mohr, A.M., ... Moldawer, L.L. (2017). Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Critical Care Medicine, 45 (2), 253-262. DOI: 10.1097/CCM.0000000000002074 DOI: https://doi.org/10.1097/CCM.0000000000002074
Alamo, I.G., Kannan, K.B., Bible, L.E., Loftus, T.J., Ramos, H., Efron, P.A., & Mohr, A.M. (2017). Daily propranolol administration reduces persistent injury-associated anemia after severe trauma and chronic stress. Journal of Trauma and Acute Care Surgery, 82 (4), 714-721. DOI: 10.1097/TA.0000000000001374 DOI: https://doi.org/10.1097/TA.0000000000001374
Mathias, B., Delmas, A.L., Ozrazgat-Baslanti, T., Vanzant, E.L., Szpila, B.E., Mohr, A.M., ... the Sepsis, Critical Illness Research Center Investigators. (2017). Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Annals Surgery, 265 (4), 827-834. DOI: 10.1097/SLA.0000000000001783 DOI: https://doi.org/10.1097/SLA.0000000000001783
Lai, D., Qin, C., & Shu, Q. (2014). Myeloid-derived suppressor cells in sepsis. BioMed Research International, 2014, 598654. DOI: 10.1155/2014/598654 DOI: https://doi.org/10.1155/2014/598654
Lei, G.S., Zhang, C., & Lee, C.H. (2015). Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infection and Immunity, 83 (2), 572-582. DOI: 10.1128/IAI.02686-14 DOI: https://doi.org/10.1128/IAI.02686-14
Hotchkiss, R.S., Moldawer, L.L., Opal, S.M., Reinhart, K., Turnbull, I.R., & Vincent J.L. (2016). Sepsis and septic shock. Nature Reviews Disease Primers, 2, 16045. DOI: 10.1038/nrdp.2016.45 DOI: https://doi.org/10.1038/nrdp.2016.45
Brudecki, L., Ferguson, D.A., McCall, C.E., & El Gazzar, M. (2012). Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infection and Immunity, 80 (6), 2026-2034. DOI: 10.1128/IAI.00239-12 DOI: https://doi.org/10.1128/IAI.00239-12
Gielen, P.R., Schulte, B.M., Kers-Rebel, E.D., Verrijp, K., Bossman, S.A., Ter Laan, M., ... Adema, G.J. (2016). Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro-Oncology, 18 (9), 1253-1264. DOI: 10.1093/neuonc/now034 DOI: https://doi.org/10.1093/neuonc/now034
Uhel, F., Azzaoui, I., Grégoire, M., Pangault, C., Dulong, J., Tadié, J.M., ... Tarte, K. (2017). Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. American Journal of Respiratory and Critical Care Medicine, 196 (30), 315-327. DOI: 10.1164/rccm.201606-1143OC DOI: https://doi.org/10.1164/rccm.201606-1143OC
Schrijver, I.T., Théroude, C., & Roger, T. (2019). Myeloid-derived suppressor cells in sepsis. Frontiers in Immunology, 10, 327. DOI: 10.3389/fimmu.2019.00327. DOI: https://doi.org/10.3389/fimmu.2019.00327
Rosenthal, M.D., Kamel, A.Y., Rosenthal, C.M., Brakenridge, S., Croft, C.A., & Moore, F.A. (2018). Chronic critical illness: Application of what we know. Nutrition in Clinical Practice, 33(1), 39-45. DOI: 10.1002/ncp.10024. DOI: https://doi.org/10.1002/ncp.10024
Timmermans, K., Kox, M., Scheffer, G.J., & Pickkers, P. (2016). Danger in the Intensive Care Unit: DAMPs in critically Ill patients. Shock, 45 (2), 108-116. DOI: 10.1097/SHK.0000000000000506 DOI: https://doi.org/10.1097/SHK.0000000000000506
Stortz, J.A., Raymond, S.L., Mira, J.C., Moldawer, L.L., Mohr, A.M., & Efron, P.A. (2017). Murine models of sepsis and trauma: can we bridge the gap? ILAR Journal, 58 (1), 90-105. DOI: 10.1093/ilar/ilx007 DOI: https://doi.org/10.1093/ilar/ilx007
Kang, J.W., Kim, S.J., Cho, H.I., & Lee, S.M. (2015). DAMPs activating innate immune responses in sepsis. Ageing Research Reviews, 24(Pt A), 54-65. DOI: 10.1016/j.arr.2015.03.003 DOI: https://doi.org/10.1016/j.arr.2015.03.003
Stortz, J.A., Murphy, T.J., Raymond, S.L., Mira, J.C., Ungaro, R., Dirain, M.L., ... Brakenridge S.C. (2017). Evidence for persistent immune suppression in patients WHO develop chronic critical illness after sepsis. Shock, 49 (3), 249-258. DOI: 10.1097/SHK.0000000000000981 DOI: https://doi.org/10.1097/SHK.0000000000000981
Walton, A.H., Muenzer, J.T., Rasche, D., Boomer, J.S., Sato, B., Brownstein, B.H., ... Hotchkiss, R.S. (2014). Reactivation of multiple viruses in patients with sepsis. PLoS One, 9 (2), e98819. DOI: 10.1371/journal.pone.0098819 DOI: https://doi.org/10.1371/journal.pone.0098819
Hu, Q., Ren, J., Wu, J., Li, G., Wu, X., Liu, S., ... Li J. (2017). Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma. Surgical Infections, 18 (5), 610-618. DOI: 10.1089/sur.2016.276 DOI: https://doi.org/10.1089/sur.2016.276
Peltz, E.D., Moore, E.E., Eckels, P.C., Damle, S.S., Tsuruta, Y., Johnson, J.L., ... Abraham, E. (2009). HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock, 32 (1), 17-22. DOI: 10.1097/shk.0b013e3181997173 DOI: https://doi.org/10.1097/SHK.0b013e3181997173
Hauser, C.J., & Otterbein, L.E. (2018). Danger signals from mitochondrial DAMPS in trauma and post-injury sepsis. European Journal of Trauma and Emergency Surgery, 44 (3), 317-324. DOI: 10.1007/s00068-018-0963-2. DOI: https://doi.org/10.1007/s00068-018-0963-2
Dzieciatkowska, M., Wohlauer, M.V., Moore, E.E., Damle, S., Peltz, E., Campsen, J., ... Hansen, K.C. (2011). Proteomic analysis of human mesenteric lymph. Shock, 35 (4), 331-338. DOI: 10.1097/SHK.0b013e318206f654 DOI: https://doi.org/10.1097/SHK.0b013e318206f654
Lee, S.K., & Ding, J.L. (2013). A perspective on the role of extracellular hemoglobin on the innate immune system. DNA and Cell Biology, 32 (2), 36-40. DOI: 10.1089/dna.2012.1897 DOI: https://doi.org/10.1089/dna.2012.1897
Fischer, S. (2018). Pattern recognition receptors and control of innate immunity: Role of nucleic acids. Current Pharmaceutical Biotechnology, 19 (15), 1203-1209. DOI: 10.2174/138920112804583087. DOI: https://doi.org/10.2174/138920112804583087
Fitzgerald, K.A., & Kagan, J.C. (2020). Toll-like receptors and the control of immunity. Cell, 180 (6), 1044-1066. DOI: 10.1016/j.cell.2020.02.041 DOI: https://doi.org/10.1016/j.cell.2020.02.041
Tartey, S., & Takeuchi, O. (2017). Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. International Reviews of Immunology, 36 (2), 57-73. DOI: 10.1080/08830185.2016.1261318 DOI: https://doi.org/10.1080/08830185.2016.1261318
Xiao, W., Mindrinos, M.N., Seok, J., Cuschieri, J., Cuenca, A.G., Gao, H., ... Inflammation and host response to injury large-scale collaborative research program. (2011). A genomic storm in critically injured humans. Journal of Experimental Medicine, 208 (13), 2581-2590. DOI: 10.1084/jem.20111354 DOI: https://doi.org/10.1084/jem.20111354
Nomellini, V., Gomez, C.R., & Kovacs, E.J. (2008). Aging and impairment of innate immunity. Contribution to Microbiology, 15, 188-205. DOI: 10.1159/000136358 DOI: https://doi.org/10.1159/000136358
de Oliveira, D.C., Hastreiter, A.A., Mello, A.S., de Oliveira Beltran, J.S., Oliveira Santos, E.W., Borelli, P., & Fock, R.A. (2014). The effects of protein malnutrition on the TNF-RI and NF-kappaB expression via the TNF-alpha signaling pathway. Cytokine, 69 (2), 218-225. DOI: 10.1016/j.cyto.2014.06.004 DOI: https://doi.org/10.1016/j.cyto.2014.06.004
Ghnewa, Y.G., Fish, M., Jennings, A., Carter, M.J., & Shankar-Hari, M. (2020). Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction. Medizinische Klinik – Intensivmedizin und Notfallmedizin, 115 (1), 10-14. DOI: 10.1007/s00063-020-00683-2 DOI: https://doi.org/10.1007/s00063-020-00683-2
Wang, Y., Ouyang, Y., Liu, B., Ma, X., & Ding R. (2018). Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thrombosis Research, 166, 28-36. DOI: 10.1016/j.thromres.2018.04.007 DOI: https://doi.org/10.1016/j.thromres.2018.04.007
Bihorac, A., Brennan, M., Ozrazgat-Baslanti, T., Bozorgmehri, S., Efron, P.A., Moore, F.A., ... Hobson, C.E. (2013). National surgical quality improvement program underestimates the risk associated with mild and moderate postoperative acute kidney injury. Critical Care Medicine, 41 (11), 2570-2583. DOI: 10.1097/CCM.0b013e31829860fc DOI: https://doi.org/10.1097/CCM.0b013e31829860fc
Jansen, M.P.B., Pulskens, W.P., Butter, L.M., Florquin, S., Juffermans, N.P., Roelofs, J.J.T.H., & Leemans, J.C. (2017). Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock, 49 (3), 301-310. DOI: 10.1097/SHK.0000000000000967 DOI: https://doi.org/10.1097/SHK.0000000000000967
Allam, R., Scherbaum, C.R., Darisipudi, M.N., Mulay, S.R., Hägele, H., Lichtnekert, J., ... Anders, H.J. (2012). Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. Journal of the American Society of Nephrology, 23 (8), 1375-1388. DOI: 10.1681/ASN.2011111077 DOI: https://doi.org/10.1681/ASN.2011111077
Lelubre, C., & Vincent, J.L. (2018). Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology, 14 (7), 417-427. DOI: 10.1038/s41581-018-0005-7 DOI: https://doi.org/10.1038/s41581-018-0005-7
Zager, R.A., Johnson, A.C., Lund, S., & Hanson, S. (2006). Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response. American Journal Physiology – Renal Physiology, 291 (3), 546-556. DOI: 10.1152/ajprenal.00072.2006 DOI: https://doi.org/10.1152/ajprenal.00072.2006
Tryggvason, K., & Wartiovaara, J. (2005). How does the kidney filter plasma? Physiology, 20, 96-101. DOI: 10.1152/physiol.00045.2004 DOI: https://doi.org/10.1152/physiol.00045.2004
Qiu, Y., Tu, G.W., Ju, M.J., Yang, C., & Luo, Z. (2019). The immune system regulation in sepsis: From innate to adaptive. Current Protein and Peptide Science, 20(8), 799-816. DOI: 10.2174/1389203720666190305164128 DOI: https://doi.org/10.2174/1389203720666190305164128
Zhu, Y., Deng, J., Nan, M.L., Zhang, J., Okekunle, A., Li, J.Y., ... Wang, P.H. (2019). The interplay between pattern recognition receptors and autophagy in inflammation. Advances in Experimental Medicine and Biology, 1209, 79-108. DOI: 10.1007/978-981-15-0606-2_6 DOI: https://doi.org/10.1007/978-981-15-0606-2_6
Bauer, M., & Wetzker, R. (2020). The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Medizinische Klinik – Intensivmedizin und Notfallmedizin, 115 (1), 4-9. DOI: 10.1007/s00063-020-00673-4 DOI: https://doi.org/10.1007/s00063-020-00673-4
Rimmelé, T., Payen, D., Cantaluppi, V., Marshall, J., Gomez, H., Gomez, A., ... Kellum, J.A. (2016). Immune cell phenotype and function in sepsis. Shock, 45(3), 282-291. DOI: 10.1097/SHK.0000000000000495 DOI: https://doi.org/10.1097/SHK.0000000000000495
Jeschke, M.G., Mlcak, R.P., Finnerty, C.C., Norbury, W.B., Gauglitz, G.G., Kulp, G.A., & Herndon, D.N. (2007). Burn size determines the inflammatory and hypermetabolic response. Critical Care, 11(4), R90. DOI: 10.1186/cc6102 DOI: https://doi.org/10.1186/cc6102
Vourc’h, M., Roquilly, A., & Asehnoune, K. (2018). Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely ill patient. Frontiers in Immunology, 9, 1330. DOI: 10.3389/fimmu.2018.01330 DOI: https://doi.org/10.3389/fimmu.2018.01330
Rea, I.M., Gibson, D.S., McGilligan, V., McNerlan, S.E., Alexander, H.D., & Ross, O.A. (2018). Age and age-related diseases: Role of inflammation triggers and cytokines. Frontiers in Immunology, 9, 586. DOI: 10.3389/fimmu.2018.00586 DOI: https://doi.org/10.3389/fimmu.2018.00586
Lambden, S., Creagh-Brown, B.C., Hunt, J., Summers, C., & Forni, L.G. (2018). Definitions and pathophysiology of vasoplegic shock. Critical Care, 22(1), 174. DOI: 10.1186/s13054-018-2102-1 DOI: https://doi.org/10.1186/s13054-018-2102-1
Alves-Filho, J.C., de Freitas, A., Spiller, F., Souto, F.O., & Cunha, F.Q. (2008). The role of neutrophils in severe sepsis. Shock, 30 (1), 3-9. DOI: 10.1097/SHK.0b013e3181818466 DOI: https://doi.org/10.1097/SHK.0b013e3181818466
Peters van Ton, A.M., Kox, M., Abdo, W.F., & Pickkers, P. (2018). Precision Immunotherapy for Sepsis. Frontiers in Immunology, 9, 1926. DOI: 10.3389/fimmu.2018.01926 DOI: https://doi.org/10.3389/fimmu.2018.01926
Zhuang, Y., Peng, H., Chen, Y., Zhou, S., & Chen, Y. (2017). Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Frontiers in Bioscience, 22, 1344-1354. DOI: 10.2741/4547 DOI: https://doi.org/10.2741/4547
Livingston, D.H., Appel, S.H., Wellhausen, S.R., Sonnenfeld, G., & Polk, H.C. Jr. (1988). Depressed interferon gamma production and monocyte HLA-DR expression after severe injury. Archives of Surgery, 123 (11), 1309-1312. DOI: 10.1001/archsurg.1988.01400350023002 DOI: https://doi.org/10.1001/archsurg.1988.01400350023002
Gouel-Chéron, A., Allaouchiche, B., Guignant, C., Davin, F., Floccard, B., Monneret, G., & AzuRea Group. (2012). Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: a powerful association to predict the development of sepsis after major trauma. PLoS One, 7 (3), e33095. DOI: 10.1371/journal.pone.0033095 DOI: https://doi.org/10.1371/journal.pone.0033095
Monneret, G., Lepape, A., Voirin, N., Bohé, J., Venet, F., Debard, A.L., ... Vanhems, P. (2006). Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Medicine, 32 (8), 1175-1183. DOI: 10.1007/s00134-006-0204-8 DOI: https://doi.org/10.1007/s00134-006-0204-8
Wakeley, M.E., Gray, C.C., Monaghan, S.F., Heffernan, D.S., & Ayala, A. (2020). Check Point Inhibitors and Their Role in Immunosuppression in Sepsis. Critical Care Clinics, 36 (1), 69-88. DOI: 10.1016/j.ccc.2019.08.006 DOI: https://doi.org/10.1016/j.ccc.2019.08.006
Venet, F., Rimmelé, T., & Monneret, G. (2018). Management of sepsis-induced immunosuppression. Criical Care Clinics, 34 (1), 97-106. DOI: 10.1016/j.ccc.2017.08.007. DOI: https://doi.org/10.1016/j.ccc.2017.08.007
Kovach, M.A., & Standiford, T.J. (2012). The function of neutrophils in sepsis. Current Opinion in Infectious Diseases, 25 (3), 321-327. DOI: 10.1097/QCO.0b013e3283528c9b DOI: https://doi.org/10.1097/QCO.0b013e3283528c9b
Demaret, J., Venet, F., Friggeri, A., Cazalis, M.A., Plassais, J., Jallades, L., ... Monneret, G. (2015). Marked alterations of neutrophil functions during sepsis-induced immunosuppression. Journal of Leukocyte Biology, 98 (6), 1081-1090. DOI: 10.1189/jlb.4A0415-168RR DOI: https://doi.org/10.1189/jlb.4A0415-168RR
Guo, Y., Patil, N.K., Luan, L., Bohannon, J.K., & Sherwood, E.R. (2018). The biology of natural killer cells during sepsis. Immunology, 153 (2), 190-202. DOI: 10.1111/imm.12854. DOI: https://doi.org/10.1111/imm.12854
Hohlstein, P., Gussen, H., Bartneck, M., Warzecha, K.T., Roderburg, C., Buendgens, L., ... Tacke, F. (2019). Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. Journal of Clinical Medicine, 8 (3), E353. DOI: 10.3390/jcm8030353 DOI: https://doi.org/10.3390/jcm8030353
Xue, M., Xie, J., Liu, L., Huang, Y., Guo, F., Xu, J., ... Qiu, H. (2019). Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study. Journal of Translational Medicine, 17 (1), 57. DOI: 10.1186/s12967-019-1811-9. DOI: https://doi.org/10.1186/s12967-019-1811-9
Walz, C.R., Zedler, S., Schneider, C.P., Mayr, S., Loehe, F., Bruns, C.J., ... Angele, M.K. (2007). Depressed T cell-derived IFN-gamma following trauma-hemorrhage: a potential mechanism for diminished APC responses. Langenbeck’s Archives of Surgery, 392 (3), 339-343. DOI: 10.1007/s00423-007-0164-7 DOI: https://doi.org/10.1007/s00423-007-0164-7
Ni, L., & Lu, J. (2018). Interferon gamma in cancer immunotherapy. Cancer Medicine, 7(9), 4509-4516. DOI: 10.1002/cam4.1700. DOI: https://doi.org/10.1002/cam4.1700
Albertsmeier, M., Quaiser, D., von Dossow-Hanfstingl, V., Winter, H., Faist, E., & Angele, M.K. (2015). Major surgical trauma differentially affects T-cells and APC. Innate Immunity, 21 (1), 55-64. DOI: 10.1177/1753425913516659 DOI: https://doi.org/10.1177/1753425913516659
Pauken, K.E., & Wherry, E.J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 36 (4), 265-276. DOI: 10.1016/j.it.2015.02.008 DOI: https://doi.org/10.1016/j.it.2015.02.008
Ruhrmann, S., Schneck, E., Markmann, M., Zink, J., Zajonz, T.S., Arens, C, ... Koch, C. (2020). Trauma-induced long-term alterations of human T cells and monocytes-results of an explorative, cross-sectional study. Shock, 53 (1), 35-42. DOI: 10.1097/SHK.0000000000001358 DOI: https://doi.org/10.1097/SHK.0000000000001358
Chakraborty, S., Karasu, E., & Huber-Lang, M. (2018). Complement after trauma: Suturing innate and adaptive immunity. Frontiers in Immunology, 9, 2050. DOI: 10.3389/fimmu.2018.02050. DOI: https://doi.org/10.3389/fimmu.2018.02050
Mira, J.C., Cuschieri, J., Ozrazgat-Baslanti, T., Wang, Z., Ghita, G.L., Loftus, T.J., ... Brakenridge, S.C. (2017). The epidemiology of chronic critical illness after severe traumatic injury at two level-one trauma centers. Critical Care Medicine, 45 (12), 1989-1996. DOI: 10.1097/CCM.0000000000002697 DOI: https://doi.org/10.1097/CCM.0000000000002697
Fielding, R.A., Vellas, B., Evans, W.J., Bhasin, S., Morley, J.E., Newman, A.B., ... Zamboni M. (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group onsarcopenia. Journal of American Medical Directors Association, 12 (4), 249-256. DOI: 10.1016/j.jamda.2011.01.003 DOI: https://doi.org/10.1016/j.jamda.2011.01.003
Saini, A., Faulkner, S., Al-Shanti, N., & Stewart, C. (2009). Powerful signals for weak muscles. Ageing Research Reviews, 8 (4), 251-267. DOI: 10.1016/j.arr.2009.02.001 DOI: https://doi.org/10.1016/j.arr.2009.02.001
Krüger, K. (2017). The increasing importance of immune regulatory effects by physical activity. Deutsche Zeitschrift für Sportmedizin, 68 (12), 277-279. DOI:10.5960/dzsm.2017.308 DOI: https://doi.org/10.5960/dzsm.2017.308
Morley, J.E., Baumgartner, R.N., Roubenoff, R., Mayer, J., & Nair, K.S. (2001). Sarcopenia. Journal of Laboratory and Clinical Medicine, 137 (4), 231-243. DOI: 10.1067/mlc.2001.113504 DOI: https://doi.org/10.1067/mlc.2001.113504
Jones, T.E., Stephenson, K.W., King, J.G., Knight, K.R., Marshall, T.L., & Scott, W.B. (2009). Sarcopenia – mechanisms and treatments. Journal of Geriatric Physical Therapy, 32 (2), 83-89. PMID: 20039588 DOI: https://doi.org/10.1519/00139143-200932020-00008
Schaper, F., & Rose-John, S. (2015). Interleukin-6: Biology, signaling and strategies of blockade. Cytokine and Growth Factor Reviews, 26 (5), 475-487. DOI: 10.1016/j.cytogfr.2015.07.004 DOI: https://doi.org/10.1016/j.cytogfr.2015.07.004
Bano, G., Trevisan, C., Carraro, S., Solmi, M., Luchini, C., Stubbs, B., ... Veronese, N. (2017). Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas, 96, 10-15. DOI: 10.1016/j.maturitas.2016.11.006 DOI: https://doi.org/10.1016/j.maturitas.2016.11.006
Haddad, F., Zaldivar, F., Cooper, D.M., & Adams, G.R. (2005). IL-6-induced skeletal muscle atrophy. Journal of Applied Physiology, 98 (3), 911-917. DOI: 10.1152/japplphysiol.01026.2004 DOI: https://doi.org/10.1152/japplphysiol.01026.2004
Tsujinaka, T., Fujita, J., Ebisui, C., Yano, M., Kominami, E., Suzuki, K., ... Monden, M. (1996). Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. Journal of Clinical Investigation, 97 (1), 244-249. DOI: 10.1172/JCI118398 DOI: https://doi.org/10.1172/JCI118398
Williams A., Wang J.J., & Wang L. (1998). Sepsis in mice stimulates muscle proteolysis in the absence of IL-6. Am. J. Physiol., 275, 1983-1991. DOI: https://doi.org/10.1152/ajpregu.1998.275.6.R1983
Picca, A., Lezza, A.M.S., Leeuwenburgh, C., Pesce, V., Calvani, R., Landi, F., ... Marzetti, E. (2017). Fueling inflammaging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences, 18 (5), E933. DOI: 10.3390/ijms18050933 DOI: https://doi.org/10.3390/ijms18050933
Batt, J., dos Santos, C.C., Cameron, J.I., & Herridge, M.S. (2013). Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. American Journal of Respiratory and Critical Care Medicine, 187 (3), 238-246. DOI 10.1164/rccm.201205-0954SO DOI: https://doi.org/10.1164/rccm.201205-0954SO
Matthias, N., Hunt, S.D., Wu, J., Lo, J., Smith Callahan, L.A., Li, Y., ... Darabi R. (2018). Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Research, 27. 65-73. DOI: 10.1016/j.scr.2018.01.008 DOI: https://doi.org/10.1016/j.scr.2018.01.008
Picca, A., Lezza, A.M.S., Leeuwenburgh, C., Pesce, V., Calvani, R., Bossola, M., ... Marzetti, E. (2018). Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders. Rejuvenation Research, 21 (4), 350-359. DOI: 10.1089/rej.2017.1989 DOI: https://doi.org/10.1089/rej.2017.1989
Picca, A., Pesce, V., Fracasso, F., Joseph, A.M., Leeuwenburgh, C., & Lezza, A.M. (2014). A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochimica et Biophysica Acta, 1840 (7), 2184-2191. DOI: 10.1016/j.bbagen.2014.03.004 DOI: https://doi.org/10.1016/j.bbagen.2014.03.004
Yao, X., Carlson, D., Sun, Y., Ma, L., Wolf, S.E., Minei, J.P., & Zang, Q.S. (2015). Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One, 10 (10), e0139416. DOI: 10.1371/journal.pone.0139416 DOI: https://doi.org/10.1371/journal.pone.0139416