PHENOTYPIC PARAMETERS AND RS10465885 POLYMORPHISM IN CONNEXIN-40 GENE AS PREDICTORS OF ARRHYTHMIA RECURRENCE IN PATIENTS WITH NON-VALVULAR ATRIAL FIBRILLATION AFTER SINUS RHYTHM RESTORING AT 1-YEAR FOLLOW-UP: RESULTS OF ARTIFICIAL NEURAL NETWORKS ANALYSIS
DOI:
https://doi.org/10.11603/2415-8798.2018.2.8998Keywords:
phenotype, rs10465885 polymorphism, gene, connexin-40, recurrence, atrial fibrillation, sinus rhythm, artificial neural networks analysis.Abstract
Atrial fibrillation (AF) is a violation of the heart rhythm associated with 1 % (or even more) of the health budget expenditure in Europe. Despite the fact that there is a constant increase in the socio-economic burden of AF, and there has been significant progress in understanding the pathophysiology of this arrhythmia, the effectiveness of its treatment is still far from satisfactory. One of the reasons for the insufficient effectiveness of modern strategies for the prevention and treatment of AF is the existence of limitations in understanding the complex pathophysiology of this disturbance of the heart rhythm.
The aim of the study – to leran the phenotypic and genotypic (rs10465885 polymorphism in connexin-40 [Cx40] gene) predictors of arrhythmia recurrence in patients with non-valvular atrial fibrillation (AF) after sinus rhythm restoring (SRR ) at 1-year follow-up (AF360), in particular by the use of artificial neural networks (ANN ) analysis.
Materials and Methods. We enrolled 104 patients (pts) with non-sustained non-valvular AF (average age (53±10) years, 80 (76.9 %) men). The distribution of rs10465885 polymorphic variants in Cx40 gene (n=73) was as follows: TT – 17 (23.3 %) pts, CT – 33 (45.2 %), СС – 23 (31.5 %). We analyzed 122 cases of SR restoring: 32 (26.2 %) – pharmacological cardioversion (29 pts); 63 (51.6 %) – electrical cardioversion (53 pts); 27 (22.2 %) – radiofrequency catheter ablation (22 pts). AF360 occurred in 76 (65.5 %) of 116 cases. In order to identify AF360 predictors, we used logistic regression analysis, as well as ANN analysis (building the linear [LIN] and nonlinear [multilayer perceptron (MLP )] ANN`s).
Results and Discussion. Genetic algorithm Input Selection revealed 16 parameters, associated with AF360, including SRR type, rs10465885 polymorphism, and certain clinical (in particular, CHA 2DS 2-VAS c score), lab and echo parameters. CHA 2DS 2-VAS c score was the only independent AF360 predictor, according to the results of multivariable logistic regression analysis. The area under curve (AU C) for MLP , included all 16 variables, revealed by the Genetic algorithm, was significantly higher than in linear LIN: 0.874 (95 % confidence interval [CI] 0.798–0.929) vs. 0.678 (CI 0.583–0.763), respectively (p<0.001). In order to obtain the maximal reduction of predictors, we built the MLP , included the set of 5 variables (MLP 5): SRR type; rs10465885 polymorphism; the heart failure presence and its stage; AF type (recurrent or first diagnosed); and antero-posterior left atrial dimension. MLP 5 AU C (0.808 (95 % CI 0.723–0.876)) was significantly higher than those for LIN (р = 0.027).
Conclusion. AF360 was non-linearly associated with SRR type, rs10465885 polymorphism in Cx40 gene, as well as certain phenotypic parameters. The further search of the most significant genetic and epigenetic predictors of AF recurrence at different terms after SRR is of crucial importance.
References
Staerk, L., Sherer, J., Ko, D., Benjamin, E. & Helm, R. (2017). Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circulation Research, 120 (9), 1501-1517. doi: 10.1161/CIRCRESAHA.117.309732.
Pérez-Serra, A., Campuzano, O. & Brugada, R. (2017). Update about atrial fibrillation genetics. Current Opinion in Cardiology, 32 (3), 246-252. doi: 10.1097/hco.0000000000000387.
Campbell, H. & Wehrens, X. (2018). Genetics of atrial fibrillation: an update. Current Opinion in Cardiology, 33 (3), 304-310. doi: 10.1097/HCO.0000000000000505.
Hayashi, K., Tada, H. & Yamagishi, M. (2017). The genetics of atrial fibrillation. Current Opinion in Cardiology, 32 (1), 10-16. doi: 10.1097/HCO.0000000000000356.
Gutierrez, A. & Chung, M.K. (2016). Genomics of Atrial Fibrillation. Current Cardiology Reports, 18 (6). doi: 10.1007/s11886-016-0735-8.
Christophersen, I.E., Holmegard, H.N., Jabbari, J., Haunsø, S., Tveit, A., Svendsen, J.H., & Olesen, M.S. (2013). Rare Variants in GJA5 Are Associated With Early-Onset Lone Atrial Fibrillation. Canadian Journal of Cardiology, 29 (1), 111-116. doi: 10.1016/j.cjca.2012.08.002.
Wirka, R.C., Gore, S., Wagoner, D.R., Arking, D.E., Lubitz, S.A., Lunetta, K.L., ... Smith, J.D. (2010). A Common Connexin-40 Gene Promoter Variant Affects Connexin-40 Expression in Human Atria and Is Associated With Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4 (1), 87-93. doi:10.1161/circep.110.959726.
Tribulova, N., Egan Benova, T., Szeiffova Bacova, B., Viczenczova, C. & Barancik, M. (2015). New aspects of pathogenesis of atrial fibrillation: remodeling of intercalated discs. Journal of Physiology and Pharmacology, 66 (5), 625-634.
Retreived from: https://www.ensembl.org/Homo_sapiens/Variation/Explore?db=core;r=1:147760132-147761132;v=rs10465885;vdb=variation;vf=5960621.
Sychov, O.S., Mikhalieva, T.V., Talaieva, T.V., Gorbas, I.M., Mikhaliev, K.O. & Zhukovska, A.S. (2015). Allel'nyj polimorfizm gena konneksina-40 (rs10465885) u pacientov s fibrilljaciej predserdij neklapannogo geneza [Allelic polymorphism of connexin-40 gene (rs10465885) in patients with non-valvular atrial fibrillation]. Ukrainskyi kardiolohichnyi zhurnal – Ukainian Journal of Cardiology, 1, 27-39 [in Russian].
Camm, A.J., Savelieva, I., Potpara, T., Hindriks, G., Pison, L. & Blömstrom-Lundqvist, C. (2016). The changing circumstance of atrial fibrillation - progress towards precision medicine. Journal of Internal Medicine, 279 (5), 412-427. doi: 10.1111/joim.12478.
Schotten, U., Hatem, S., Ravens, U., Jaïs, P., Müller, F., Goette, A., … Camm, A.J. (2015). The European Network for Translational Research in Atrial Fibrillation (EUTRAF): Objectives and initial results. Europace, 17 (10), 1457-1466. doi: 10.1093/europace/euv252.
Kirchhof, P., Breithardt, G., Bax, J., Benninger, G., Blomstrom-Lundqvist, C., Boriani, G., … Camm, A. J. (2016). A roadmap to improve the quality of atrial fibrillation management: proceedings from the fifth Atrial Fibrillation Network/European Heart Rhythm Association consensus conference. Europace, 18, 37-50. doi: 10.1093/europace/euv304.
Lubitz, S.A. & Ellinor, P.T. (2018). Genetics of Atrial Fibrillation. Cardiac Electrophysiology: From Cell to Bedside, 465-472. doi:10.1016/b978-0-323-44733-1.00049-3
(2013). ESC guidelines on the management of stable coronary artery disease. European Heart Journal, 34 (38), 2949-3003. doi: 10.1093/eurheartj/eht296.
Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., … Voigt, J. (2015). Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28 (1). doi: 10.1016/j.echo.2014.10.003.
Retreived from: https://www.lifetechnologies.com/order/genome-database/browse/genotyping/keyword/rs10465885?ICID=uc-snp-rs10465885.
(2016). ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. (2016). European Heart Journal, 37 (38), 2893-2962. doi: 10.1093/eurheartj/ehw210.
Calkins, H., Hindricks, G., Cappato, R., Kim, Y., Saad, E., Aguinaga ,L., … Document Reviewers. (2018). 2017 HRS/EHRA/ ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace, 20 (1), e1-e160. doi: 10.1093/europace/eux274.
Hall, J.L., Ryan, J.J., Bray, B.E., Brown, C., Lanfear, D., Newby, L.K., … Weintraub, W.S. (2016). Merging Electronic Health Record Data and Genomics for Cardiovascular Research. Circulation: Cardiovascular Genetics, 9 (2), 193-202. doi: 10.1161/hcg.0000000000000029.
Weng, L., Choi, S., Klarin, D., Smith, J., Loh, P., Chaffin, M., … Lubitz, S. (2017). Heritability of Atrial Fibrillation. (2017). Circ Cardiovasc Genet., 10 (6), pii: e001838.
Weng, L., Lunetta, K., Müller-Nurasyid, M., Smith, A., Thériault, S., Weeke, P., … Lubitz, S. (2017). Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium. Scientific Reports, 7 (1), 11303. doi: 10.1038/s41598-017-09396-7.
Haykin, S.S. (2016). Neural networks and learning machines. Delhi: Pearson.
Mikhalieva, T., Sychov, O., Getman, T., Gurianov, V., Mikhaliev, K. (2017). Henderni aspekty fibryliatsii peredserd neklapannoho henezu: polimorfizm rs10465885 hena koneksynu-40, fenotypovi klastery patsiientiv ta klinichni kharakterystyky arytmii [Gender aspects of atrial fibrillation of non-valvular genesis: rs10465885 of the finoxin-40 gene polymorphism, phenotypic clusters of patients, and clinical characteristics of arrhythmias]. Arytmolohiia – Arrhythmology, 2, 42-43 [In Ukrainian].
Mikhalieva, T., Sychov, O., Getman, T., Gurianov, V., Mikhaliev, K. (2016). P4467 Integral clusters of patients with non-valvular atrial fibrillation, based on rs10465885 polymorphism in connexin-40 gene and phenotype: the risk of arrhythmia recurrence after sinus rhythm restoring. European Heart Journal, 37 (Suppl 1), 884.
Jacobs, V., May, H.T., Bair, T.L., Crandall, B.G., Cutler, M., Day, J.D., … Bunch, T.J. (2015). The impact of risk score (CHADS2 versus CHA2DS2-VASc) on long-term outcomes after atrial fibrillation ablation. Heart Rhythm, 12 (4), 681-686. doi:10.1016/j.hrthm.2014.12.034.
Vizzardi, E., Curnis, A., Latini, M., Salghetti, F., Rocco, E., Lupi, L., ... Dei Cas, L. (2014). Risk factors for atrial fibrillation reccurence: a literature review. Journal of Cardiovascular Medicine, 15 (3), 235-253. doi: 10.2459/JCM.0b013e328358554b.
Muse, E.D., Wineinger, N.E., Spencer, E.G., Peters, M., Henderson, R., Zhang, Y., … Topol, E. J. (2018). Validation of a genetic risk score for atrial fibrillation: A prospective multicenter cohort study. PLOS Medicine, 15 (3). doi:10.1371/journal.pmed.1002525.
Kolek, M.J., Graves, A.J., Xu, M., Bian, A., Teixeira, P.L., Shoemaker, M.B., … Darbar, D. (2016). Evaluation of a Prediction Model for the Development of Atrial Fibrillation in a Repository of Electronic Medical Records. JAMA Cardiology, 1 (9), 1007. doi: 10.1001/jamacardio.2016.3366.
Huang, H., & Darbar, D. (2016). Genotype influence in responses to therapy for atrial fibrillation. Expert Review of Cardiovascular Therapy, 14 (10), 1119-1131. doi: 10.1080/14779072.2016.1210510.
Syeda, F., Holmes, A.P., Yu, T.Y., Tull, S., Kuhlmann, S.M., Pavlovic, D., … Kirchhof, P. (2016). PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers. Journal of the American College of Cardiology, 68 (17), 1881-1894. doi:10.1016/j.jacc.2016.07.766.
Parvez, B., Shoemaker, M.B., Muhammad, R., Richardson, R., Jiang, L., Blair, M.A., … Darbar, D. (2013). Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm, 10 (6), 849-855. doi: 10.1016/j.hrthm.2013.02.018.
Chen, F., Yang, Y., Zhang, R., Zhang, S., Dong, Y., … Xia, Y. (2016). Polymorphism rs2200733 at chromosome 4q25 is associated with atrial fibrillation recurrence after radiofrequency catheter ablation in the Chinese Han population. American Journal of Translational Research, 8 (2), 688-697. eCollection 2016.
Zhao, L., Zhang, G., Wen, Z., Huang, C., Wu, H., Xu, J., … Liu, S. (2017). Common variants predict recurrence after nonfamilial atrial fibrillation ablation in Chinese Han population. International Journal of Cardiology, 227, 360-366. doi: 10.1016/j.ijcard.2016.11.057.
Mohanty, S., Hall, A.W., Mohanty, P., Prakash, S., Trivedi, C., Biase, L.D., … Natale, A. (2015). Novel Association Of Polymorphic Genetic Variants With Predictors Of Outcome Of Catheter Ablation In Atrial Fibrillation: New Directions From A Prospective Study (DECAF). Journal of the American College of Cardiology, 65 (10), 7-17. doi: 10.1016/s0735-1097(15)60468-5.
Shoemaker, M.B., Muhammad, R., Parvez, B., White, B.W., Streur, M. & Song, Y. (2013). Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm, 10 (3), 394-400. doi: 10.1016/j.hrthm.2012.11.012.
Gemel, J., Levy, A.E., Simon, A.R., Bennett, K.B., Ai, X., Akhter, S. & Beyer, E.C. (2014). Connexin40 abnormalities and atrial fibrillation in the human heart. Journal of Molecular and Cellular Cardiology, 76, 159-168. doi: 10.1016/j.yjmcc.2014.08.021.
Weng, L., Preis, S.R., Hulme, O.L., Larson, M.G., Choi, S.H., Wang, B., … Lubitz, S.A. (2017). Genetic Predisposition, Clinical Risk Factor Burden, and Lifetime Risk of Atrial Fibrillation. Circulation, 137 (10), 1027-1038. doi: 10.1161/circulationaha.117.031431.
Piepoli, M., Hoes, A., Agewall, S., Albus, C., Brotons, C., Catapano, A., ... Verschuren, W. (2016). 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis, 252, 207-274. doi: 10.1016/j.atherosclerosis.2016.05.037.
Mikhalieva, T.V., Sychov, O.S., Getman, T.V., Gurianov, V.G. & Mikhaliev, K.O. (2017). Predyktory vynyknennia retsydyvu arytmii v patsiientiv iz fibryliatsiieiu peredserd neklapannoho henezu pislia vidnovlennia synusovoho rytmu: mistse polimorfizmu rs10465885 hena koneksynu-40 [Predictors of arrhythmia recurrence in patients with non-valvular atrial fibrillation after sinus rhytmh restoring: the role of the rs10465885 polymrphism in connexin-40 gene]. Ukrainskyi kardiolohichnyi zhurnal – Ukainian Journal of Cardiology, 1, 56-67 [in Ukrainian].
Chen, L., Chung, M., Allen, L., Ezekowitz, M., Furie, K., McCabe, P., … Stroke Council. (2018). Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity. Circulation, CIR.0000000000000568. doi: 10.1161/CIR.0000000000000568.
Roberts, J.D. & Marcus, G.M. (2015). The Burgeoning Field of Ablatogenomics. Circulation: Arrhythmia and Electrophysiology, 8 (2), 258-260. doi:10.1161/circep.115.002890.
Heijman, J., Guichard, J., Dobrev, D. & Nattel, S. (2018). Translational Challenges in Atrial Fibrillation. Circulation Research, 122 (5), 752-773. doi: 10.1161/circresaha.117.311081.
Nielsen, J., Fritsche, L., Zhou, W., Teslovich, T., Holmen, O., Gustafsson, S., ... Willer, C. Genome-wide Study of Atrial Fibrillation Identifies Seven Risk Loci and Highlights Biological Pathways and Regulatory Elements Involved in Cardiac Development. (2018). The American Journal of Human Genetics, 102 (1), 103-115. doi: 10.1016/j.ajhg.2017.12.003.
Marrouche, N., Brachmann, J., Andresen, D., Siebels, J., Boersma, L., Jordaens, L., … CASTLE-AF Investigators. (2018). Catheter Ablation for Atrial Fibrillation with Heart Failure. The New England Journal of Medicine, 378, 417-427. doi: 10.1056/NEJMoa1707855.
Kotecha, D., Breithardt, G., Camm, A.J, Lip, G., Schotten, U., Ahlsson, A., … Kirchhof, P. (2018). Integrating new approaches to atrial fibrillation management: the 6th AFNET/EHRA Consensus Conference. Europace, 20 (3), 395-407. doi: 10.1093/europace/eux318.
Fatkin, D., Santiago, C., Huttner, I., Lubitz, S. & Ellinor, P. (2017). Genetics of Atrial Fibrillation: State of the Art in 2017. Heart, Lung and Circulation, 26 (9), 894-901. doi: 10.1016/j.hlc.2017.04.008.
Heijman, J. & Dobrev, D. (2016). Challenges to the translation of basic science findings to atrial fibrillation therapies. Future Cardiology, 12 (3), 251-254. doi: 10.2217/fca-2016-0007.
Downloads
Published
How to Cite
Issue
Section
License
Authors who sent their manuscript to "Вісник наукових досліджень. Bulletin of Scientific Research" Surgery agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)