ARTIFICIAL INTELLIGENCE IN THERAPEUTIC DENTISTRY
DOI:
https://doi.org/10.11603/2311-9624.2025.3.15873Keywords:
artificial intelligence; tooth restoration; endodontics; periodontology; diseases of the oral mucosa.Abstract
Artificial intelligence is rapidly and radically transforming the dental industry. Its impact is particularly felt in the ability to instantly and efficiently analyze a wide range of visual information for various dental conditions. The aim of our study was to conduct a review of the literature on the application of AI in therapeutic dentistry and evaluate it from a perspective that demonstrates its growing role in this field. This review included about 25 scientific publications by authors whose interests related to research on the use of artificial intelligence in the field of therapeutic dentistry. The data search was conducted in the scientometric databases PubMed and Google Scholar. The study included the analysis of original scientific articles, mini-reviews and systematic reviews. At the same time, attention was paid to the existing data on the use of AI by dentists, the advantages and disadvantages and, accordingly, the prospects for further research. AI and neural networks are used in restorative dentistry to detect tooth decay or defects in tooth restorations, and to facilitate the choice of a method for treating hard tooth tissue [21]. Materials and methods. It helps diagnose endodontic disease by analyzing radiographs for signs of periapical lesions, root fractures, and other problems, and helps with treatment planning by evaluating factors such as tooth anatomy, degree of infection, and patient data. In periodontology, aI technologies are concerned with the analysis and comparison of long-term patient examination data to enable the physician to objectively assess the clinical situation and develop a clear, effective and personalized treatment plan [1; 31]. The use of artificial intelligence in oncology is promising particular, in matters of diagnosis and treatment of cancer of the oral cavity and various precancerous conditions The use of artificial intelligence is undoubtedly a huge breakthrough in the field of dentistry. It should be noted the positive aspects of this technique in increasing the accuracy of diagnosis of various dental diseases and the approach to treatment planning. In particular, in oncostomatology, where the speed and accuracy of obtaining results can save the patient’s life. But, at the same time, it should be noted the fact that artificial intelligence, although a valuable tool, should complement, not replace, medical professionals. Conclusions. After all, the issues of possible errors and, accordingly, responsibility for them are not fully clarified. Therefore, analyzing all the data, we can say that the role of the clinician was and should remain central in diagnostics and treatment planning, and artificial intelligence technologies are assigned the role of an indispensable assistant.
References
Ahmed N., Abbasi M. S., Zuberi F., Qamar W., Halim M. S. B., Maqsood A., Alam M. K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry – A Systematic Review. Biomed Res Int. 2021. DOI: 10.1155/2021/9751564
Bernauer S. A., Zitzmann N. U., Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors. 2021. T. 21, № 19. P. 6628. DOI: 10.3390/s21196628
Bichu Y. M., Hansa I., Bichu A. Y., Premjani P., Flores-Mir C., Vaid N. R. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021. T. 22, № 1. P. 18. DOI: 10.1186/s40510-021-00361-9
Bianchi J., Mendonca G., Gillot M., Oh H., Park J., Turkestani N. A., et al. Three-dimensional digital applications for implant space planning in orthodontics: A narrative review. J World Fed Orthod. 2022. T. 11, № 6. P. 207–215. DOI: 10.1016/j.ejwf.2022.10.006
Bonny T., Al Nassan W., Obaideen K., Al Mallahi M. N., Mohammad Y., El-Damanhoury H. M. Contemporary Role and Applications of Artificial Intelligence in Dentistry. F1000Res. 2023. T. 12. P. 1179. DOI: 10.12688/f1000research.140204.1
Bornes R. S., Montero J., Correia A. R. M., Rosa N. R. D. N. Use of bioinformatic strategies as a predictive tool in implant supported oral rehabilitation: A scoping review. J Prosthet Dent. 2023. T. 129, № 2. P. 322.e1–322.e8. DOI: 10.1016/j.prosdent.2022.12.011
Al Turkestani N., Bianchi J., Deleat-Besson R., Le C., Tengfei L., Prieto J. C., et al. Clinical decision support systems in orthodontics: A narrative review of data science approaches. Orthod Craniofac Res. 2021. Suppl. 2. P. 26–36. DOI: 10.1111/ocr.12492.
Gili T., Di Carlo G., Capuani S., Auconi P., Caldarelli G., Polimeni A. Complexity and data mining in dental research: A network medicine perspective on interceptive orthodontics. Orthod Craniofac Res. 2021. Suppl. 2. P. 16–25. DOI: 10.1111/ocr.12520
Goncharuk-Khomyn M., Noenko I., Cavalcanti A. L., Adigüzel Ö., Dubnov A. Artificial Intelligence in Endodontics: Relevant Trends and Practical Perspectives. Ukrainian Dent J. 2023. T. 2, № 1. P. 96–101. DOI: 10.56569/UDJ.2.1.2023.96-101
Karobari M. I., Adil A. H., Basheer S. N., Murugesan S., Savadamoorthi K. S., Mustafa M., et al. Evaluation of the Diagnostic and Prognostic Accuracy of Artificial Intelligence in Endodontic Dentistry: A Comprehensive Review of Literature. Comput Math Methods Med. 2023. 2023:7049360. DOI: 10.1155/2023/7049360
Ossowska A., Kusiak A., Świetlik D. Artificial Intelligence in Dentistry – Narrative Review. Int J Environ Res Public Health. 2022. T. 19, № 6. P. 3449. DOI: 10.3390/ijerph19063449
Orhan K., Bayrakdar I.S., Ezhov M., et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020. Т. 53. P. 680–689. DOI: 10.1111/iej.13265
Carrillo-Perez F., Pecho O. E., Morales J. C., Paravina R. D., Della Bona A., Ghinea R., et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent. 2022. T. 34, № 1. P. 259–280. DOI: 10.1111/jerd.12844
Ding H., Wu J., Zhao W., Matinlinna J. P., Burrow M. F., Tsoi J. K. H. Artificial intelligence in dentistry – A review. Front Dent Med. 2023. T. 4. P. 1085251. DOI: 10.3389/fdmed.2023.1085251
Geetha V., Aprameya K. S., Hinduja D. M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inf Sci Syst. 2020. T. 8. P. 1–14. DOI: 10.1007/s13755-019-0096-y
Minnema J., Ernst A., van Eijnatten M., Pauwels R., Forouzanfar T., Batenburg K. J., Wolff J. A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery. Dentomaxillofac Radiol. 2022. T. 51, № 7. P. 20210437. DOI: 10.1259/dmfr.20210437
Pauwels R., Brasil D. M., Yamasaki M. C., et al. Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021. T. 131. P. 610–616. DOI: 10.1016/j.oooo.2021.01.018
Schwendicke F., Samek W., Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020. T. 99, № 7. P. 769–774. DOI: 10.1177/0022034520915714
Revilla-León M., Gómez-Polo M., Vyas S., Barmak B. A., Gallucci G. O., Att W., Krishnamurthy V. R. Artificial intelligence applications in implant dentistry: A systematic review. J Prosthet Dent. 2023. T. 129, № 2. P. 293–300. DOI: 10.1016/j.prosdent.2021.05.008
Hung K., Montalvao C., Tanaka R., Kawai T., Bornstein M. M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac Radiol. 2020. T. 49, № 1. P. 20190107. DOI: 10.1259/dmfr.20190107
Hung K. F., Yeung A. W. K., Bornstein M. M., Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol. 2023. T. 52, № 1. P. 20220335. DOI: 10.1259/dmfr.20220335
Wenzel A. Radiographic modalities for diagnosis of caries in a historical perspective: from film to machine-intelligence supported systems. Dentomaxillofac Radiol. 2021. T. 50, № 5. P. 20210010. DOI: 10.1259/dmfr.20210010
Keskin C., Kele A. Digital Applications in Endodontics. J Exp Clin Med. 2021. T. 38, № 3s. P. 168–174.
Kim B. S., Yeom H. G., Lee J. H., et al. Deep learning-based prediction of paresthesia after third molar extraction: a preliminary study. Diagnostics. 2021. T. 11. P. 1572. DOI: 10.3390/diagnostics11091572
Khanagar S. B., Alfadley A., Alfouzan K., Awawdeh M., Alaqla A., Jamleh A. Developments and Performance of Artificial Intelligence Models Designed for Application in Endodontics: A Systematic Review. Diagnostics. 2023. T. 13, № 3. P. 414. DOI: 10.3390/diagnostics13030414
Liu Z., Liu J., Zhou Z., et al. Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int J Comput Assist Radiol Surg. 2021. T. 16. P. 415–422. DOI: 10.1007/s11548-021-02309-0
Liu J., Chen Y., Li S., Zhao Z., Wu Z. Machine learning in orthodontics: Challenges and perspectives. Adv Clin Exp Med. 2021. T. 30, № 10. P. 1065–1074. DOI: 10.17219/acem/138702
Machoy M. E., Szyszka-Sommerfeld L., Vegh A., Gedrange T., Woniak K. The ways of using machine learning in dentistry. Adv Clin Exp Med. 2020. T. 29, № 3. P. 375–384. DOI: 10.17219/acem/115083
Nguyen T. T., Larrivée N., Lee A., Bilaniuk O., Durand R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc. 2021. Т. 87. L7.
Pethani F. Promises and perils of artificial intelligence in dentistry. Aust Dent J. 2021. T. 66, № 2. P. 124–135. DOI: 10.1111/adj.12812
Puladi B., Gsaxner C., Kleesiek J., Hölzle F., Röhrig R., Egger J. The impact and opportunities of large language models like ChatGPT in oral and maxillofacial surgery: a narrative review. Int J Oral Maxillofac Surg. 2024. T. 53, № 1. P. 78–88. DOI: 10.1016/j.ijom.2023.09.005
Subramanian A. K., Chen Y., Almalki A., Sivamurthy G., Kafle D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence – A Comprehensive Review. Biomed Res Int. 2022. DOI: 10.1155/2022/1880113
Siddiqui T. A., Sukhia R. H., Ghandhi D. Artificial intelligence in dentistry, orthodontics and orthognathic surgery: A literature review. J Pak Med Assoc. 2022. Suppl. 1(2). P. S91–S96. DOI: 10.47391/JPMA.AKU-18
Thurzo A., Urbanová W., Novák B., et al. Where is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare. 2022. T. 10, № 7. P. 1269. DOI: 10.3390/healthcare10071269
Hung K., Yeung A. W. K., Tanaka R., Bornstein M. M. Current Applications, Opportunities and Limitations of AI for 3D Imaging in Dental Research and Practice. Int J Environ Res Public Health. 2020. T. 17, № 12. P. 4424. DOI: 10.3390/ijerph17124424
Huang H., Zheng O., Wang D., Yin J., Wang Z., Ding S., et al. Chat GPT for shaping the future of dentistry: the potential of multi-modal large language model. Int J Oral Sci. 2023. T. 15, № 1. P. 29. DOI: 10.1038/s41368-023-00239-y
Макєєв В.Ф., Щерба П.П. Штучний інтелект у стоматології. Частина 1. Сучасна стоматологія. 2024. № 3. С. 95–104. DOI: 10.33295/1992-576X-2024-3-95.
Бульбук О. І., Бульбук О. В., Шутак О. В., Сухоребський Ю. І. Штучний інтелект у сучасній стоматології (огляд літератури). Art of Medicine. 2025. Т. 2, № 34. С. 101–107. DOI: 10.21802/artm.2025.2.34.101
