CLINICAL USE OF LASER RADIATION IN THE TREATMENT OF GENERALISED PERIODONTITIS
DOI:
https://doi.org/10.11603/2311-9624.2025.3.15872Keywords:
laser radiation; low-intensity radiation; periodontal tissue disease; periodontitis, periodontal tissue index assessment; periodontal pocket; periodontal treatment.Abstract
Periodontal tissue diseases are inflammatory disorders linked to an imbalance of the oral microflora, with a predominance of periodontopathogenic microorganisms. Periodontitis causes the destruction of periodontal structures, gum bleeding, the formation of periodontal pockets and the loss of epithelial attachment. Conventional therapeutic approaches often fail to achieve stable results; therefore, the implementation of combined treatment methods, particularly those involving low-intensity light irradiation, remains highly relevant. The purpose of this research was to evaluate the influence of low-level laser radiation on periodontal tissues and on clinical indices, including the papilla bleeding index and periodontal pocket depth, in patients diagnosed with chronic generalised periodontitis of grades I–II. The study involved 50 patients with chronic generalised periodontitis of grades I–II. Participants were divided into two groups: group 1 (23 patients) received standard treatment, while group 2 (27 patients) received standard therapy supplemented with low-level laser radiation in the red range (wavelengths 660 nm). Each irradiation session lasted 10 minutes, with a total of 10 sessions per treatment course. Treatment outcomes were assessed using the PMA and hygiene indices, the papilla bleeding index, and measurements of periodontal pocket depth. Improvement in all measured parameters was observed in both groups following treatment. However, group 2 demonstrated significantly better outcomes for periodontal condition indices and periodontal pocket depth compared with group 1. Six months after treatment, the PMA, hygiene, and papilla bleeding indices in group 2 were 30–62.2 % higher than those in group 1. The mean reduction in periodontal pocket depth in group 2 was 1.26 mm relative to baseline values, which was 20.7 % greater than the 0.72 mm reduction observed in group 1. Laser radiation has a favourable impact on oral hygiene dynamics, clinical indices of periodontal condition, and the reduction of periodontal pocket depth. Due to its anti-inflammatory properties, low-level laser therapy may be recommended as an effective adjunct to conventional treatment in the comprehensive management of periodontal diseases.
References
Chukkapalli S. S., Rivera-Kweh M. F., Velsko I. M., Chen H., Zheng D., Bhattacharyya I., Gangula P. R., Lucas A. R., Kesavalu L. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers. Pathogens and disease. 2015. Vol. 73(3). ftv009. https://doi.org/10.1093/femspd/ftv009
Данко Е. М., Пантьо В. В. Роль мікрофлори порожнини рота у виникненні захворювань тканин пародонту (огляд літератури). Вісник стоматології. 2024. № 126(1). С. 216–220. https://doi.org/10.35220/2078-8916-2024-51-1.36
Hajishengallis G., Lamont R.J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular oral microbiology. 2012. Vol. 27(6). P. 409–419. https://doi.org/10.1111/j.2041-1014.2012.00663.x
Yucel-Lindberg T., Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert reviews in molecular medicine. 2013. Vol. 15. e7. https://doi.org/10.1017/erm.2013.8
Savage A., Eaton K. A., Moles D. R., Needleman I. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. Journal of clinical periodontology. 2009. Vol. 36(6). P. 458–467. https://doi.org/10.1111/j.1600-051X.2009.01408.x
Tezal M., Uribe S. A lack of consensus in the measurement methods for and definition of periodontitis. Journal of the American Dental Association (1939). 2011. № 142(6). P. 666–667. https://doi.org/10.14219/jada.archive.2011.0250
Berakdar M., Callaway A., Eddin M. F., Ross A., Willershausen B. Comparison between scaling-root-planing (SRP) and SRP/photodynamic therapy: six-month study. Head & face medicine. 2012. No. 8. P. 12. https://doi.org/10.1186/1746-160X-8-12
Matuliene G., Pjetursson B. E., Salvi G. E., Schmidlin K., Brägger U., Zwahlen M., Lang N. P. Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance. Journal of clinical periodontology. 2008. Vol. 35(8). P. 685–695. https://doi.org/10.1111/j.1600-051X.2008.01245.x
Costa F. O., Cota L. O. M. Cumulative smoking exposure and cessation associated with the recurrence of periodontitis in periodontal maintenance therapy: A 6-year follow-up. Journal of periodontology. 2019. Vol. 90(8). P. 856–865. https://doi.org/10.1002/JPER.18-0635
Sbordone L., Ramaglia L., Gulletta E., Iacono V. Recolonization of the subgingival microflora after scaling and root planing in human periodontitis. Journal of periodontology. 1990. Vol. 61(9). P. 579–584. https://doi.org/10.1902/jop.1990.61.9.579
Feres M., Bernal M., Matarazzo F., Faveri M., Duarte P., Figueiredo L. Subgingival bacterial recolonization after scaling and root planing in smokers with chronic periodontitis. Aust Dent J. 2015. Vol. 60. P. 225–232. https://doi.org/10.1111/adj.12225
Takeuchi Y., Aoki A., Hiratsuka K., Chui C., Ichinose A., Aung N., Kitanaka Y., Hayashi S., Toyoshima K., Iwata T., Arakawa S. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics. 2023. Vol. 12. P. 1676. https://doi.org/10.3390/antibiotics12121676
Данко Е. М., Костенко Є. Я., Пантьо В. В. Застосування PILER випромінювання при комплексному лікуванні пародонтиту. Intermedical journal. 2024. № 1. С. 70–75. https://doi.org/10.32782/2786-7684/2024-1-10
Chen S., Tang L., Xu M., et al. Light-emitting-diode-based antimicrobial photodynamic therapies in the treatment of periodontitis. Photodermatol Photoimmunol Photomed. 2022. Vol. 38. P. 311–321. https://doi.org/10.1111/phpp.12759
Etemadi A., Sadatmansouri S., Sodeif F., Jalalishirazi F., Chiniforush N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Gingival Fibroblast Cells. Photochemistry and photobiology. 2021. Vol. 97(5). P. 1123–1128. https://doi.org/10.1111/php.13463
Wang Y., Huang Y. Y., Wang Y., Lyu P., Hamblin M. R. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Scientific reports. 2016. № 6. P. 33719. https://doi.org/10.1038/srep33719
de Sousa A. P., Santos J. N., Dos Reis J. A., Jr Ramos T. A., de Souza J., Cangussú M. C., Pinheiro A. L. Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomedicine and laser surgery. 2010. Vol. 28 Issue 4. P. 547–552. https://doi.org/10.1089/pho.2009.2605
Theodoro L. H., Marcantonio R. A. C., Wainwright M., Garcia V. G. LASER in periodontal treatment: is it an effective treatment or science fiction? Brazilian oral research. 2021. Vol. 35(Supp 2). e099. https://doi.org/10.1590/1807-3107bor-2021.vol35.0099
Hamblin M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017. Vol. 4, Issue 3. P. 337–361. https://doi.org/10.3934/biophy.2017.3.337
Rathod A., Jaiswal P., Bajaj P., Kale B., Masurkar D. Implementation of Low-Level Laser Therapy in Dentistry: A Review. Cureus. 2022. Vol. 14, Issue 9. e28799. https://doi.org/10.7759/cureus.28799
Acar A. H., Yolcu Ü., Altındiş S., Gül M., Alan H., Malkoç S. Bone regeneration by low-level laser therapy and low-intensity pulsed ultrasound therapy in the rabbit calvarium. Archives of oral biology. 2016. Vol. 61. P. 60–65. https://doi.org/10.1016/j.archoralbio.2015.10.011
Bosco A. F., Faleiros P. L., Carmona L. R., Garcia V. G., Theodoro L. H., de Araujo N. J., Nagata M. J., de Almeida J. M. Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft. Journal of photochemistry and photobiology. B, Biology. 2016. Vol. 163. P. 303–310. https://doi.org/10.1016/j.jphotobiol.2016.08.040
Nagata M. J., Santinoni C. S., Pola N. M., de Campos N., Messora M. R., Bomfim S. R., Ervolino E., Fucini S. E., Faleiros P. L., Garcia V. G., Bosco A. F. Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. Journal of photochemistry and photobiology. B, Biology. 2013. Vol. 121. P. 6–14. https://doi.org/10.1016/j.jphotobiol.2013.01.013
Heiskanen V., Hamblin M. R. Photobiomodulation: lasers vs. light emitting diodes? Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology. 2018. Vol. 17, Issue 8. P. 1003–1017. https://doi.org/10.1039/c8pp90049c.
