Evaluation of occlusal ratios and masticatory function in patients with maxillary fractures by digital analysis system

Authors

  • Ye. V. Shumynskyi O. O. Bohomolets National Medical University, Kyiv
  • A. V. Kopchak O. O. Bohomolets National Medical University, Kyiv
  • V. H. Huryanov O. O. Bohomolets National Medical University, Kyiv
  • N. V. Lyseyko O. O. Bohomolets National Medical University, Kyiv
  • O. M. Doroshenko Shupyk National Healthcare University of Ukraine

DOI:

https://doi.org/10.11603/2311-9624.2021.3.12460

Keywords:

Le Fort, maxillary fractures, Tscan, occlusiography, buttress

Abstract

Comminuted maxillary fractures in the area of ​​vertical buttresses complicate the process of reduction and fixation, create preconditions for the development of deep functional disorders in the early and late post-traumatic period. Their restoration with the titanium miniplates is the main treatment task of this category of patients.

The aim of the study – to investigate occlusal relationships and determine their changes in patients with maxillary fractures, depending on the applied method of reconstruction of vertical buttresses using digital analysis of occlusion.

Materials and Methods. The study involved 18 patients with multiple midface fractures (15 men and 3 women). Average age 43.8±10.8 g. Analysis of occlusion performed in groups with linear fractures (Gr1, n=6), with bone defects in the area of ​​vertical buttresses (Gr2, n=5) and with restored buttresses using bone autografts (Gr3, n=7). The analysis was carried out using the apparatus and software "T-Scan" company "Tekscan" (Tekscan, Inc., S. Boston, MA, USA). The time of occlusion, disocclusion, and the index of occlusion asymmetry were investigated.

Results and Discussion. Median values ​​of occlusion time, disocclusion, asymmetry index Gr1- (0.17 (0.12 ÷ 0.25), 0.18 (0.15 ÷ 0.19), 12.2 % (8 % ÷ 29.1 %)); Gr2 - (0.29 (0.18 ÷ 0.37), 0.13 (0.12 ÷ 0.20), 28.4 % (16.8 % ÷ 36.8 %));  Gr3 - (0.22 (0.21 ÷ 0.38), 0.11 (0.08 ÷ 0.22), 23.2 % (15.4 % ÷ 29.7 %)) respectively. There was a tendency to increase the occlusion time by 24 %, disocclusion time by 16 % and the degree of asymmetry by 17 % in patients with mandibular fractures accompanied by detachment or cutting of the masticatory muscles and in patients with coronal approach accompanied by exposure of the temporal muscles for the treatment of midface bones fractures.

Conclusions. 1. Factors contributing to worsening functional changes are fractures of the maxilla with defects in the area of ​​vertical buttresses (asymmetry index growth by an average of 13.6 % and occlusion time by 0.1 s),  also, trauma of masticatory muscles during the surgical approach. 2. Replacement of vertical buttresses defects with bone autografts improves the restoration of masticatory function in comparison with patients where miniplates were used to fix the fragments at the site of defects, as an independent surgical solution (the mean time of occlusion in this category of patients was 25 % less, and the asymmetry index was less by 19 %).

References

Lykhota, K.M. (2015). Otsinka okliuziinykh spivvidnoshen zubo-shchelepnoi systemy u patsiientiv iz sahitalnymy anomaliiamy prykusu metodom kompiuternoi okliuziohrafii [Evaluation of occlusal ratios of the dental-maxillary system in patients with sagittal occlusion anomalies by computer occlusion]. Zbirnyk naukovykh prats spivrobitnykiv NMAPO im. P. L. Shupyka – Coll. of Sci. Works of employees of P. L. Shupyk NMAPE, 24 (3), 43-50 [in Ukrainian].

Fedorova, O.V. (2017). Mozhlyvosti vykorystannia systemy kompiuternoho analizu okliuziinykh kontaktiv pry ortopedychnomu likuvanni patsiientiv iz vtorynnymy zuboshchelepnymy deformatsiiamy (ohliad literatury) [Use of computer analysis of occlusal contacts in orthopedic patients with secondary deformities of dentition (literature review)]. Ukrayinskyi stomatolohichnyi almanakh – Ukrainian Dental Almanac, 3, 49-52 [in Ukrainian].

Kurita, M., Okazaki, M., Ozaki, M., Tanaka, Y., Tsuji, N., Takushima, A., & Harii, K. (2010). Patient satisfaction after open reduction and internal fixation of zygomatic bone fractures. J. Craniofac. Surg., 21 (1), 45-49. DOI: 10.1097/SCS.0b013e3181c36304.

Salentijn, E.G., Collin, J.D., Boffano, P., & Forouzanfar, T. (2014). A ten year analysis of the traumatic maxillofacial and brain injury patient in Amsterdam: complications and treatment. J. Craniomaxillofac. Surg., 42 (8), 1717-1722. DOI: 10.1016/j.jcms.2014.06.005.

Dmitriev, M.O., Gunas, I.V., Dzevulska, I.V., & Zhulkevych, I.V. (2018). Determination of individual cephalometric characteristics of the occlusal plane in Ukrainian young men and young women with orthognatic bite. Biomedical and Biosocial Anthropology, 33, 5-11. DOI: 10.31393/bba33-2018-01

Baltrusaityte, A., Surna, A., Pileicikiene, G., Kubilius, R., Gleiznys, A., & Baltrusaitis, M. (2013). Dynamical changes of occlusion and articulation during treatment of mandibular angle fractures. Stomatologija, 15 (1), 12-19.

Zachariades, N., Papademetriou, I., & Rallis, G. (1993). Complications associated with rigid internal fixation of facial bone fractures. J. Oral Maxillofac. Surg., 51 (3), 275-279. DOI: 10.1016/s0278-2391(10)80174-0.

Manson, P.N. (1986). Some thoughts on the classification and treatment of Le Fort fractures. Ann. Plastic Surg., 17 (5), 356-363. DOI:.

Kühnel, T.S., & Reichert, T.E. (2015). Traumatologie des mittelgesichts. Laryngorhinootologie, 94 (Suppl. 1), S206-247. DOI: 10.1055/s-0034-1396873.

Maddux, S.D., & Butaric, L.N. (2017). Zygomaticomaxillary morphology and maxillary sinus form and function: how spatial constraints influence pneumatization patterns among modern humans. Anat. Rec. (Hoboken), 300 (1), 209-225. DOI: 10.1002/ar.23447.

Shumynskyi, Ye.V., Kryshchuk, M.H., & Kopchak, A.V. (2020). Biomekhanichnyi analiz metodiv vidnovlennia tsilisnosti vertykalnykh kontrforsiv verkhnoi shchelepy pry travmatychnykh perelomakh kistok serednoi zony oblychchia iz vykorystanniam indyvidualizovanykh skinchenno-elementnykh modelei [Biomechanical analysis of methods for restoring the integrity of the maxilla vertical buttresses in midfacial bones fractures using individualised finite element models]. Visnyk stomatolohii – Stomatological Bulletin, 4 (113), 72-78 [in Ukrainian].

McRae, M., & Frodel, J. (2000). Midface fractures. Facial. Plast. Surg., 16 (2), 107-113. DOI: 10.1055/s-2000-12572.

AO CMF. Retrieved from: https://aocmf.aofoundation.org.

Roumeliotis G., Ahluwalia R., Jenkyn T., & Yazdani A. (2015). The Le Fort system revisited: Trauma velocity predicts the path of Le Fort I fractures through the lateral buttress. Plast. Surg. (Oakv), 23 (1), 40-42. DOI: 10.4172/plastic-surgery.1000899.

De Feudis, F., De Benedittis, M., Antonicelli, V., Pittore, P., & Cortelazzi, R. (2014). Decision-making algorithm in treatment of the atrophic mandible fractures. Chir, 35 (3-4), 94-100.

Kopchak, A., & Shumynsky, Ie. (2020). Relation between paranasal sinuses and surrounding bone tissue. J. Educ. Health Sport, 10 (12), 22-31. DOI: 10.12775/JEHS.2020.10.12.002.

Bagheri, S.C., Dierks, E.J., Kademani, D., Holmgren, E., Bell, R.B., Hommer, L., & Potter, B.E. (2006). Application of a facial injury severity scale in craniomaxillofacial trauma. J. Oral Maxillofac. Surg., 64 (3), 408-414. DOI: 10.1016/j.joms.2005.11.013.

Bida, O.V. (2018). Dyferentsiiovani metody ortopedychnoho likuvannia ta fuknktsionalnoi reabilitatsii khvorykh z defektamy zubnykh riadiv, uskladnenykh zuboshchelepnymy deformatsiiamy [Differentiated methods of orthopedic treatment and functional rehabilitation of patients with dentition defects complicated by dental deformities]. Doctorʼs thesis. Ivano-Frankivsk : Ivano-Frankivskyi NMU [in Ukrainian].

Kanda, Y. (2013). Investigation of the freely available easy-to-use software ʼEZRʼ for medical statistics. Bone Marrow Transplant., 48, 452-458.

Prafulla, T. (2016). Digital analysis of occlusion using T-Scan III in orthodontics. Journal of Indian Orthodontic Society, 50 (3), 196. DOI: 10.4103/0301-5742.186386.

Erkmen, E., Ataç, M.S., Yücel, E., & Kurt, A. (2009). Comparison of biomechanical behaviour of maxilla following Le Fort I osteotomy with 2- versus 4-plate fixation using 3D-FEA: part 3: inferior and anterior repositioning surgery. Int. J. Oral Maxillofac. Surg., 38 (2), 173-179. DOI: 10.1016/j.ijom.2008.10.006.

Le Fort, R. (1901). Experimental study of fractures of the upper jaw Parts I and II. Rev. Chir. Paris, 23, 208.

Marciani, R.D. (1993). Management of midface fractures: fifty years later. J. Oral. Maxillofac. Surg., 51 (9), 960-968. DOI: 10.1016/s0278-2391(10)80035-7.

Wang, H., Chen, M.S., Fan, Y.B., Tang, W., & Tian, W.D. (2007). Biomechanical evaluation of Le Fort I maxillary fracture plating techniques. J. Oral Maxillofac. Surg., 65 (6), 1109-1116. DOI: 10.1016/j.joms.2006.10.020.

Sutter, B.A. (2016). Incidence of headaches related to occlusion and bite force imbalance: a case study. Cranio, 34 (3), 195-207. DOI: 10.1179/2151090315Y.0000000006.

Published

2021-11-01

How to Cite

Shumynskyi, Y. V., Kopchak, A. V., Huryanov, V. H., Lyseyko, N. V., & Doroshenko, O. M. (2021). Evaluation of occlusal ratios and masticatory function in patients with maxillary fractures by digital analysis system. CLINICAL DENTISTRY, (3), 10–25. https://doi.org/10.11603/2311-9624.2021.3.12460

Issue

Section

Surgical stomatology