Clinical evaluation of efficiency of extracorporeal shock wave therapy on postoperative hollow bone mandibular defects

Authors

  • Ya. E. Vares Danylo Halytsky Lviv National Medical University
  • N. V. Shtybel Danylo Halytsky Lviv National Medical University

DOI:

https://doi.org/10.11603/2311-9624.2020.2.11257

Keywords:

bone healing, bone defects, maxillofacial area, extracorporeal shock wave therapy

Abstract

Summary. A number of domestic and foreign scientists have proven the effectiveness of extracorporeal shock wave therapy to optimize reparative osteogenesis. However, the clinical efficacy of the proposed method in combination with the classical approach to the replacement of hollow bone defects of the jaws remains unclear.

The aim of the study – to determine the clinical effectiveness of extracorporeal shock wave therapy in order to optimize the healing of hollow postoperative bone defects of the mandible.

Materials and Methods. We examined and treated 18 patients aged 21 to 46 years, who had indications to atypical removal of the third lower molars. Surgical interventions were performed according to the modified method of S. Asanami and Y. Kasazaki; before suturing all defects were filled with collagen sponge impregnated with calcium hydroxyapatite and beta-tricalcium phosphate. In the postoperative period, patients of the main group (n = 12) received a course of extracorporeal shock wave therapy. Quantitative (determination of thickness and relative area) and qualitative (determination of optical density and peculiarities of density histograms) evaluation of regenerate in areas with compact and spongy base were performed on the basis of cone-beam computed tomography. The level of marginal bone loss was also determined.

Results and Discussion. Significant increase in the thickness of bone regenerate was observed in all areas of measurement in the main group. Three months after the intervention, the bone defects of the control group were filled only on 60.16 %, while in the main group there was a replacement up to 98.15 % of the defect. The vertical reduction was up to (1.6±1.0) mm in all studied cases, regardless of the group, with no signs of horizontal bone loss. In the main group, the increase in the optical density of bone regenerate was significantly greater than in the control. In patients of the main group, the structural affinity of the regenerate to intact bone tissue was observed: in areas with a trabecular base, heterogeneous regenerate prevailed, and in areas with a cortical base, the structure of the regenerate was more homogeneous. A homogeneous regenerate with a density gradient decreasing to the middle of the defect was observed in the control group.

Conclusions. The additional use of extracorporeal shock wave therapy significantly stimulates the healing of postoperative mandibular bone defects in patients compared with the filling of defects only with collagen sponge impregnated with calcium hydroxyapatite and beta-tricalcium phosphate.

References

Sheikh, Z., Hamdan, N., Abdallah, M-N., Glogauer, M., & Grynpas, M. (2019). Natural and synthetic bone replacement graft materials for dental and maxillofacial applications. Advanced Dental Biomaterials. Elsevier, Amsterdam. DOI: https://doi.org/10.1016/B978-0-08-102476-8.00015-3

Stewart, S., Bryant, S.J., Ahn, J., & Hankenson, K.D. (2015). Bone Regeneration. Translational Regenerative Medicine, 313-333. DOI:10.1016/b978-0-12-410396-2.00024-4 DOI: https://doi.org/10.1016/B978-0-12-410396-2.00024-4

Ansari, M. (2019). Bone tissue regeneration: biology, strategies and interface studies. Progress in Biomaterials. 8, 223-237. Retrieved from: https://doi.org/10.1007/s40204-019-00125-z DOI: https://doi.org/10.1007/s40204-019-00125-z

Gertsen, G.I., Se-Fei, Ostapchuk, R.M., Lisovyi O.V., & Slabospytsky, A.V (2017). Vplyv ekstrakorporalnoi udarno-khvylovoi terapii na zroshchennia perelomiv kistok (ohliad literatury) [The effect of extracorporeal shock-wave therapy on bone fracture healing (a literature review)]. Visnyk ortopedii, travmatolohii ta protezuvannia – Bulletin of Orthopedics, Traumatology and Prosthetics, 1, 61-65 [in Ukrainian].

Vares, Y.E., & Shtybel N.V. (2019). Suchasni fizychni metody stymulyatsii protsesiv zahoiennia kistkovoi tkanyny [Modern physical methods of stimulation of bone tissue healing processes]. Ukrainskyi zhurnal medytsyny, biolohii ta sportu – Ukrainian Journal of Medicine, Biology and Sport, 6 (22), 9-15. Retrieved from: https://doi.org/10.26693/jmbs04.06.009 [in Ukrainian]. DOI: https://doi.org/10.26693/jmbs04.06.009

Hausdorf, J., Sievers, B., Schmitt-Sody, M., Jansson, V., Maier, M., & Mayer-Wagner, S. (2011). Stimulation of bone growth factor synthesis in human osteoblasts and fibroblasts after extracorporeal shock wave application. Arch. Orthop. Trauma Surg., 131 (3), 303-309. DOI: 10.1007/s00402-010-1166-4. DOI: https://doi.org/10.1007/s00402-010-1166-4

Romeo, P., Lavanga, V., Pagani, D., & Sansone V. (2014) Extracorporeal shock wave therapy in musculoskeletal disorders: a review. Med. Princ. Pract., 23 (1), 7-13.

DOI: 10.1159/000355472. DOI: https://doi.org/10.1159/000355472

Pfaff, J.A., Boelck, B., Bloch, W., & Nentwig G.H. (2016). Growth factors in bone marrow blood of the mandible with application of extracorporeal shock wave therapy. Implant Dentistry, 25 (5), 606-612. DOI: 10.1097/ID.0000000000000452. DOI: https://doi.org/10.1097/ID.0000000000000452

Huang, H.M., Li, X.L., Tu, S.Q., Chen, X.F., Lu, C.C., & Jiang, L.H. (2016). Effects of roughly focused extracorporeal shock waves therapy on the expressions of bone morphogenetic Protein-2 and Osteoprotegerin in osteoporotic fracture in rats. Chin. Med. J., 129, 2567–2575. DOI: https://doi.org/10.4103/0366-6999.192776

Griffin, V., & Igbal, S.A. (2011). Exploring the application of mesenchimal stem cells in bone repair and regeneration. J. Bone Jt. Surg., 93 (4), 427-434. DOI: https://doi.org/10.1302/0301-620X.93B4.25249

Cheng, J.H., & Wang, C.J. (2015). Biological mechanism of shockwave in bone. Int. J. Surg., 24(PtB), 143-146.

DOI: 10.1016/j.ijsu.2015.06.059 DOI: https://doi.org/10.1016/j.ijsu.2015.06.059

Schaden, W., Mittermayr, R., Haffner, N., Smolen, D., Gerdesmeyer, L., & Wang, C.J. (2015). Extracorporeal shockwave therapy (ESWT) - First choice treatment of fracture non-unions? International Journal of Surgery. 24 (PtB), 179-183. DOI: 10.1016/j.ijsu.2015.10.003. DOI: https://doi.org/10.1016/j.ijsu.2015.10.003

Gerzen, G.I., Se-Fei, S.F., Ostapchuk, R.N., Malohatko, S.I., Kostenko, A.V., & Zherebchuk, V.V. (2016). Vliyaniye radialnoy ekstrakorporalnoy udarno-volnovoy terapii na zazhyvleniye eksperimentalnogo defekta kosti [The effect of radial extracorporeal shock-wave treatment on healing of experimental bone defect]. Ortopediya, travmatologiya i protezirovaniye – Orthopedics, Traumatology and Prosthetics. 4, 11-16 [in Russian].

Massari, L., Benazzo, F., Falez, F., Perugia, D., Pietrogrande, L., Setti, S., et al. (2019). Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopeadics, 43 (3), 539-551. DOI: 10.1007/s00264–018–4274–3. DOI: https://doi.org/10.1007/s00264-018-4274-3

Inanmaz, M.E., Uslu, M., Isik, C., Kaya, E., Tas, T., & Bayram, R. (2014). Extracorporeal shockwave increases the effectiveness of systemic antibiotic treatment in implant-related chronic osteomyelitis: experimental study in a rat model. Journal of Orthopeadic Research, 32 (6), 752-756. DOI: 10.1002/jor.22604. DOI: https://doi.org/10.1002/jor.22604

Bereket, C., Çakir-Özkan, N., Önger, M.E., & Arici S. (2018). The effect of different doses of extracorporeal shock waves on experimental model mandibular distraction. The Journal of Craniofacial Surgery, 29 (6), 1666-1670. DOI: 10.1097/SCS.0000000000004571. DOI: https://doi.org/10.1097/SCS.0000000000004571

Vares, Y.E., Shtybel N.V., Kucher, A.R, Student, V.O., & Dudash, A.P. (2019). Morfolohichni zminy pisliaoperatsiinoho kistkovoho defektu pid vplyvom exkstrakorporalnoi udarno-khvylovoi terapii [Morphological changes of postoperative bone defect under extracorporeal shock-wave therapy]. Visnyk problem biolohii i medytsyny – Bulletin of Problems of Biology and Medicine, 4 (153), 214-217. DOI: 10.29254/2077-4214-2019-4-1-153-214-217 [in Ukrainian]. DOI: https://doi.org/10.29254/2077-4214-2019-4-1-153-214-217

Asanami, S., & Kasazaki, Y. (1993). Expert third molar extractions. 3rd ed. Tokyo, Chicago: Quintessence Pub. Co.

Parsa, A., Ibrahim, N., Hassan, B., Motroni, A., van der Stelt, P., & Wismeijer, D. (2013). Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofac. Radiol., 42, 79884780. DOI: 10.1259/dmfr/79884780. DOI: https://doi.org/10.1259/dmfr/79884780

Pauwels, R., Jacobs, R., Singer, S.R., & Mupparapu, M. (2015). CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac. Radiol., 44(1), 2014–2038. DOI:10.1259/dmfr.20140238 DOI: https://doi.org/10.1259/dmfr.20140238

Majzoub, J., Ravida, A., Starch-Jensen, T., Tattan, M., & Suárez-López del Amo, F. (2019). The influence of different grafting materials on alveolar ridge preservation: A systematic review. J. Oral Maxillofac. Res., 10 (3), e6. DOI: 10.5037/jomr.2019.10306. DOI: https://doi.org/10.5037/jomr.2019.10306

Published

2020-09-23

How to Cite

Vares, Y. E., & Shtybel, N. V. (2020). Clinical evaluation of efficiency of extracorporeal shock wave therapy on postoperative hollow bone mandibular defects . CLINICAL DENTISTRY, (2), 33–42. https://doi.org/10.11603/2311-9624.2020.2.11257

Issue

Section

Surgical stomatology