КОНЦЕПТУАЛЬНІ УЗАГАЛЬНЕННЯ ПРО РОЛЬ ПРОСТОРОВИХ ТРИГЕРНИХ ХВИЛЬ У СИСТЕМНІЙ БІОЛОГІЇ ТА СИСТЕМНІЙ МЕДИЦИНІ

Автор(и)

  • O. P. Mintser Національна медична академія післядипломної освіти імені П. Л. Шупика https://orcid.org/0000-0002-7224-4886
  • V. M. Zaliskyi Національна медична академія післядипломної освіти імені П. Л. Шупика

DOI:

https://doi.org/10.11603/mie.1996-1960.2018.4.9839

Ключові слова:

просторові тригерні хвилі, поширення запалення, анастаз, увігнуті тригерні хвилі, «збудливе середовище», математичне моделювання, ядерний фактор транскрипції NF-kB.

Анотація

У ряді попередніх статей ми зупинялись на особливій важливості тригерних процесів у біології та медицині [1-3]. Також підкреслювалось значення тригерних ефектів в явищах апоптозу [2, 3]. Новітні дослідження дозволяють розглянути системні біологічні процеси з ще одного боку. Просторові тригерні хвилі — біологічний феномен, що пояснює включення та передавання інформації швидко, надійно і на значних відстанях. Розглянуто роль просторових тригерних хвиль у процесах апоптозу, анастазу, розвитку запалення, а також повторного виникнення гострої запальної реакції та інші події. Постульовано, що головними особливостями NF-kB регуляторної мережі є просторове поєднання функціонування петель швидкого позитивного зворотного зв'язку та повільно негативного зворотного зв'язку, що необхідно для активного поширення хвиль цитокінів. Постульовано також, що NF-kB бере участь у механізмі, відповідальному за поширення тригерних хвиль і за досить надійну генерацію сигналу, забезпечуючи короткі експозиції токсичної дії продукованих цитокінів. Наявні дані дозволяють припустити, що NF-kB є системним компонентом, який бере участь у механізмі генерації хвиль поширення хемоаттрактантів — цитокінів. Висловлено припущення, що анастаз пов'язаний із поширенням тригерних увігнутих спіральних хвиль, які є переносниками енергії від периферії до центру процесів реверсування апоптозу.

Посилання

Mintser O. P., Ihrunova K. M. (2014). Shchodo mezhi dotsilnosti vykorystannia poniattia «tryherni vzaiemodii» v biolohii ta medytsyni. Pershe povidomlennia — postanovka problems [Expediency limits of using the «Trigger interactions» concept in biology and medicine. The first message — statement of the problem]. Medichna informatika ta inzheneriya (Medical Informatics & Engineering), 4, 14-22. [In Ukrainian].

Mintser O. P., Vatlitsov D. V. (2015). Fotoaktyvnist biolohichnykh molekul yak mozhlyvyi faktor korehuvannia tryherzalezhnykh systemnykh protsesiv (pershe povidomlennia) [Photoactivity of biological molecules as a possible correction factor for trigger-dependent system processes (first message)]. Medichna informatika ta inzheneriya (Medical Informatics & Engineering), 4, 7-10. [In Ukrainian].

Vatlitsov D. V. (2016). Rehuliatory prohramovanoi klitynnoi smerti izolovanykh modelnykh system [Regulators of programmable cell death of isolated model systems]. Medichna informatika ta inzheneriya (Medical Informatics & Engineering), 1, 56-57. [In Ukrainian].

Mazurov M. E. (2018). Nelineynyie vognutyie spiralnyie avtovolnyi v aktivnyih sredah, perenosyaschie energiyu, ih prilozheniya v biologii i meditsine [Nonlinear concave spiral autowaves in active media that transfer energy, their applications in biology and medicine]. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics), Vol. 13, Is. 1, 187-207. doi: 10.17537/2018.13.187. [In Russian].

Allard J., Mogilner A. (2013). Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol., 25, 107-115.

Baund V., Karin M. (2001). Signal transmission by tumor necrosis factor and its relatives. Trends in Cell Biol., 11(9), 372-377.

Bretschneider T., Anderson K., Ecke M., et al (2009). The three dimensional dynamics of actin waves, a model of cytoskeletal self organization. Biophys J., 96, 2888-2900.

Chang J.B., Ferrell J.E. (2013). Mitotic trigger waves and the spatial coordination of the xenopus cell cycle. Nature., 500, 603-607.

Cheong R., Bergmann A., Werner SL., et al (2006). Transieng i kappa B activity mediates temporal NF-kB dymnamics in response to a wide range of tumor necrosis factor alpha doses. J. Biol. Chem., 281(5), 2945-2950.

Cybulsky M.I., Mc-Comb D.J., Movat H.R. (1989). Protein synthesis dependent and independent mechanisms of neutrophil emigration. Different mechanisms of inflammation in rabbits induced by IL-1, TNF a or endotoxin versus leucocytes chemoattractants. Am. J. Patlol., 135(1), 227-237.

Enesa K., Zakkar M., Choudhury H., et al (2008). NF- kB suppression by the deubiquitinating entrance Ceranue. J. Biol. Chem., 282(11), 7036-70-45.

Geiger J., Wessels D., Soll D.R. (2003). Human polymorph nuclear leukocytes respond to waves of Chenoa attractant Like Dictyostelium. Cell. Motil. Cytoskeleton., 56, 27-44.

Gelens L., Anderson A., Ferrell J.E. (2014). Spatial trigger waves: positive feedback gets you a long wag. Mol. Biol.Cell., 25(22), 3486-3493.

Hagberg A., Maron E. (1994). Pattern formation in non-gradient reaction diffusion systems: the effects of front bifurcation. Nonlinearity, 7, 805-835.

Hall J.E., (Ed.) (2010). Guyton and Hall Textbook of Medical Physiology. Maryland Heights, MO: WB Saunders.

Han S.J., Ko H.M., Choi J.H., et al (2002). Molecular mechanism for lipopolysaccharide induced biphasic

activation of nuclear factor kappa B. J. Biol. Chem., 277(47), 44715-44721.

Hodgkin A.L., Huxley A.F. (1952). Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500-544.

Hoffman A., Levchenko A., Scoff M.L., et al (2002). The i kappa B NF kappaB signaling module: temporal control and selective gene activation. Science, 298(5596), 1241-1245.

Hursh J.B. (1939). Conduction velocity and diameter of nerve fiber. Am. J. Physiol, 127, 131-139.

Hutti J.E., Turk B.E., Asara J.M., et al (2007). Ikappa B kinase beta phosplrorylates the K63 denbignitinase A20 to cause feedback inhibition of the NF-kB pathway. Mol. Cell. Biol., 27(21), 7451-7461.

Lechleiter J., Girard S., Peralta E., et al. (1991). Spiral calcium wave propagation and annihilation in xenopus leaves oocytes. Science, 252(5002), 123-126.

Lewis R.S. (2003). Calcium oscillation in T-cells: mechanisms and consequences for gene expression. Biochem. Soc. Trans., 31, 925-929.

Malcolm D.C. (1951). A method of measuring reflex times applied in sciatica and other conditions dme to nerve root compression. J. Neurol. Neurosurg. Psychiatry, 14, 15-24.

Medrhifov R. (2010). Inflammation 2010: new adventures of an old flame. Cell, 140(6), 771-776.

Meron E. (1992). Pattern formation in excitable media. Physics Reports, 218, 1-66.

Nian M., Lee P., Khaper N., et al (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res., 94(12), 1543-1553.

Oikawa N., Bodenschatz S.E., Zykov U.S. (2015). Usual spiral wave dynamics in the vessel Levine model of an excitable medium. Chaos, 25(5), 0531115.

Pomerening J.R., Sontag E.D., Ferrell J.E. (2003). Building a cell cycle oscillator: hysteresis and bistability in activation of Cdc2. Nat. Cell. Biol., 5(4), 346-351.

Rekdal O., Konopski Z., Evendsen J.S., et al (1994). The TNFR p55 and p57 mediate cleenataxis of PMM Induced by TNFa and TNFa 36-62 peptide. Mediators Inllamm, 3(5), 347-352.

Sheng X., Pharrell J.E. (2018). Apoptosis. Propagates through the apoptosis as trigger waves. Science, 361(6402), 607-612.

Starobin J.M., Dauforet C.P. (2009). Critical scale of propagation influences dynamics of waves in a model excitable medium. Nonlinear Biomed. Phys., 3(1), 4.

Stranb S.V., Giovanuucci D.R., Yule D.I. (2000). Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1, 4, 5 triphosphate raptors, ryanodine receptors and mitochondria. J. Gen. Physiol., 116, 547-560.

Stricker S.A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol., 211, 157-176.

Swadlow H.A., Waxman S.G. (2012). Axonal contention delays. Sholarpedia, 7, 1451.

Tay S., Hughey J.J., Lee T.K., et al (2010). Single cell NF kB dynamics reveal digital activation and analogue infraction processing. Nature, 466 (7303), 267-271.

Tsai TYC., Choi Y.S., Ma W., et al (2008). Robust, tunable biological oscillations front interlined positive and negative feedback logos. Science, 321(5885), 126129.

Turher D.A., Paszek P., Woodcock D.J., et al (2010). Physiological levels of TNF a stimulation induced stochastic dynamics of NF Kb responses in single living cells. J. Cell. Sci., 123(pt16), 2834-2843.

Tyson J.J., Keener J.P. (1988). Singular perturbation theory of traveling waves in excitable media. Physica D., 32, 327-361.

Werner C.L., Barken D., Hoffmann A. (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science, 309(5742), 1857-1861.

Winfree A.T. (1972). Spiral waves of chamois activity. Science, 175, 634-636.

Yand Q., Ferrell J.E. (2013). The Cdk 1 APC/C cell cycle oscillator circuit function as a time delayed ultrasensitive switch. Nat. Cell. Biol., 15, 519-525.

Yde F., Menge B., Jensen M.H., et al (2011). Modeling the NF-Kb mediated inflammatory response predicts cytokine waves in tissue. BMC Syst. Biol., 5, 115.

Ho L. T., Ho M. T., Keng H. M. et al (2012). Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. MolBioCell, 23(12), 2240 2252.

VanagV.K., Epstein I.R. (2001). Inwardly Rotating Spiral Waves in Reaction-Diffusion System. Science, 294, 835.

Liu P., et al (2011). Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell., 146, 889-903.

Cheng X., J. E. Ferrell, Jr. (2018). Apoptosis propagates through the cytoplasm as trigger waves. Science, Vol. 361, 607.

##submission.downloads##

Опубліковано

2019-02-19

Як цитувати

Mintser, O. P., & Zaliskyi, V. M. (2019). КОНЦЕПТУАЛЬНІ УЗАГАЛЬНЕННЯ ПРО РОЛЬ ПРОСТОРОВИХ ТРИГЕРНИХ ХВИЛЬ У СИСТЕМНІЙ БІОЛОГІЇ ТА СИСТЕМНІЙ МЕДИЦИНІ. Медична інформатика та інженерія, (4), 5–15. https://doi.org/10.11603/mie.1996-1960.2018.4.9839

Номер

Розділ

Статті