ПРИНЦИПИ, МЕТОДИ ТА ГАЛУЗІ МЕДИКО-БІОЛОГІЧНИХ ЗАСТОСУВАНЬ ОПТИЧНИХ ІМУНОСЕНСОРІВ

Автор(и)

  • V. P. Martseniuk Університет Бєльсько-Бяли, Республіка Польща https://orcid.org/0000-0001-5622-1038
  • A. Klos-Witkowska Університет Бєльсько-Бяли, Республіка Польща
  • A. S. Sverstiuk ДВНЗ «Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України» https://orcid.org/0000-0001-8644-0776
  • T. V. Bihunyak ДВНЗ «Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України»

DOI:

https://doi.org/10.11603/mie.1996-1960.2018.2.9289

Ключові слова:

біосенсор, імуносенсор, флуоресценція, поглинання

Анотація

Стаття присвячена дослідженню основних принципів проектування та фізико-біологічних методів використання оптичних імуносенсорів. Ми досліджуємо основні шляхи застосування оптичних імуносенсорів у біології та медицині, включаючи тестування якості харчових продуктів, захист природного середовища, медичну діагностику.

Посилання

Tian, Y., Chen, Y., Song, D., Liu, X., Bi, S., Zhou, X., Cao, Y., & Zhang, H. (2005). Acousto-optictunable filter-surface plasmon resonance immunosensor for fibronectin. Analytica Chimica Acta, 551(1-2), 98-104. doi: 10.1016/j.aca.2005.07.017.

Liu T, Liang L. L., Xiao P., Sun, L. P., Huang, Y. Y., Ran, Y., Jin, L., & Guan, B. O. (2018). A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosensors and Bioelectronics, 100, 155-160. doi: 10.1016/j.bios.2017.08.061.

Alvarez, S., Li, C., Chiang, C., Shuller, I., & Sailor, M. (2009). A label-free porous alumina interferometric immunosensors. ASC Nano, 3, 3301-3307. doi: 10.1021/ nn900825q.

Viter, R., Savchuk, M., Iatsunskyi, I., Pietralik, Z., Starodub, N., Shpyrka, N., Ramanaviciene, A., Ramanavicius, A. (2018). Analytical, thermodynamical and kinetic characteristics of photoluminescence

immunosensor for the determination of Ochratoxin A. Biosensors and Bioelectronics, 99, 237-243. doi: 10.1016/j.bios.2017.07.056.

Guo, Y., Liu, R., Liu, Y., Xiang, D., Liu, Y., Gui, W., Li, M., & Zhu, G. (2018). A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Science of The Total Environment, 613-614, 783-791. oi: 10.1016/j.scitotenv.2017.09.157.

Aoyagi, S., & Kudo, M. (2005). Development of fluorescence change-based, reagent-less optic immunosensor. Biosensors and Bioelectronics, 20(8), 1680-1684. doi: 10.1016/j.bios.2004.06.041.

Wang, J., Wang, J., Zhang, Z., Zhang, X., Ru, S., & Dong, Y. F. (2017). Development of an immunosensor for quantifying zebra fish vitellogenin based on the Octet system. Analytical Biochemistry, 533, 60-65. doi: 10.1016/j.ab.2017.07.005.

Driscoll, A. J., & Johnson, P. A. (2018). Numerical modeling of analyte diffusion and adsorption behavior in microparticle and nanoparticle based biosensors. Chemical Engineering Science, 184, 141-148. doi: 10.1016/j.ces.2018.03.010.

Yin, H., Xiao, R., Rong, Z., Jin, P., Ji, C., & Zhang, J. (2015). Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus. Methods, 90, 65-67. doi: 10.1016/j.ymeth.2015.05.007.

Chen, L. H., Chan, C. C., Menon, R., Balamurali, P., Wong, W. C., Ang, X. M., ... Leong, K. C. (2013). Fabry — Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan / polystyrene sulfonate) membrane. Sensors and Actuators B: Chemical, 188, 185-192. doi: 10.1016/j.snb.2013.06.093.

Oroszlan, P., Duveneck, G. L., Ehrat, M., & Widmer, H. M. (1993). Fiber-optic Atrazine immunosensor. Sensors and Actuators B: Chemical, 11(1-3), 301-305. doi: 10.1016/0925-4005(93)85268-F.

Betts, T. A., Catena, G. C., Huang, J., Litwiler, K. S., Zhang, J., Zagrobelny, J. A., & Bright, F. V. (1991). Fiber-optic-based immunosensors for haptens. Analytica Chimica Acta, 246(1), 55-63. doi: 10.1016/S0003-2670(00)80664-9.

Starodub, N. F., Arenkov, P. J., Starodub, A. N., & Berezin, V. A. (1994). Fiber optic immunosensors based on enhanced chemiluminescence and their application to determine different antigens. Sensors and Actuators B: Chemical, 18(1-3), 161-165. doi: 10.1016/0925-4005(94)87076-4.

Gaudin, V. (2017). Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosensors and Bioelectronics, 90, 363-377. doi: 10.1016/j. bios.2016.12.005.

Kios-Witkowska, A. (2016). The phenomenon of fluorescence inimmunosensors. Acta Biochimica Polonica, 63(2), 215-221, doi: 10.18388/abp.2015_1231.

Chen, L. H., Chan, C. C., Ni, K., Hu, P. B., Li, T., Wong, W. C., ... Leong, K. C. (2013). Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper. Sensors and Actuators B: Chemical, 178, 176-184. doi: 10.1016/j.snb.2012.12.071.

Martsenyuk, V. P., Klos-Witkowska, A., & Sverstyuk, A. S. (2018). Stability, bifurcation and transition to chaos in a model of immunosens or based on lattice differential equations with delay. Electronic Journal of Qualitative Theory of Differential Equations, 27, 1-31. doi: 10.14232/ejqtde.

Martsenyuk, V. P., Klos-Witkowska, A., & Sverstyuk, A. S. (2018). Study of classification of immunosensors from viewpoint of medical tasks. Medical informatics and engineering, 1(41), 13-19. doi: 10.11603/mie.1996-1960.2018.1.8887.

Hao, X., Zhou, X., Zhang, Y., Liu, L., Long, F., Song, L., & Shi, H. (2014). Melamine detection in dairy products by using a reusable evanescent wave fiberoptic biosensor. Sensors and Actuators B: Chemical, 204, 682-687. doi: 10.1016/j.snb.2014.08.023.

Jeong, Y., Kook, Y. M., Lee, K., & Koh, W. G. (2018). Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics, 111, 102-116. doi: 10.1016/j.bios.2018.04.007.

Aranda, P. R., Messina, G. A., Bertolino, F. A., Pereira, S. V., Fernandez Baldo, M. A., & Raba, J. (2018). Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal, 141, 308-323. doi: 10.1016/j.microc.2018.05.024.

Szekacs, A., Adanyi, N., Szekacs, I., & Szendro, I. (2009). Optical wave quite light-mode spectroscopy immunosensors for environmental monitoring. Apply Opt., 48, 151-158. doi: 10.1364/ A0.48.00B151.

Ye, K., Sinawang, P. D., Tok, A. I. Y., & Marks, R. S. (2018). Photoinducibles ilanediazirineasan effective crosslinker in the construction of a chemiluminescent immunosensor targeting a model E. coli analyte. Sensors and Actuators B: Chemical, 256, 234-242. doi: 10.1016/j.snb.2017.10.058.

Liu, X., Song, X., Dong, Z., Meng, X., Chen, Y., & Yang, L. (2017). Photonic crystal fiber-based immunosensor for high-performance detection of alphafetoprotein. Biosensors and Bioelectronics, 91, 431-435. doi: 10.1016/j.bios.2016.12.058.

Myndrul, V., Viter, R., Savchuk, M., Shpyrka, N., Erts, D., ... Iatsunskyi, I. (2018). Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 102, 661-667. doi: 10.1016/j. bios.2017.11.048.

Xing, W. L., Ma, L. R., Jiang, Z. H., Cao, F. H., & Jia, M. H. (2000). Portable fiber-optic immunosensor for detection of methsulfuronmethyl. Talanta, 52(5), 879-883. doi: 10.1016/S0039-9140(00)00440-9.

Ramirez, B., Salgado, A., & Valdman, B. (2009). The evolution and development of immunosensors for health and environmental monitoring: problems and perspectives. Brazilian J. Chem Eng., 26, 227-229.

Scholten, K., & Meng, E. (2018). A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. International Journal of Pharmaceutics, 544(2), 319-334, doi: 10.1016/j. ijpharm.2018.02.022.

Shankaran, D., Gobi, H., & Miura, N. (2007). Recent advancements in surface plasmon resonance immunosensor for detection of small molecules of biomedical, food, enviromnetal interst. Sensors and Actuators B: Chemical, 121, 158-177. doi: 10.1016/j. snb.2006.09.014.

Sharma, A. K., Pandey, A. K., & Kaur, B. (2018). A review of advancements (2007-2017) in plasmonics-based optical fiber sensors. Optical Fiber Technology, 43, 20-34. doi: 10.1016/j.yofte.2018.03.008.

Bier, F. F., Stöcklein, W., Böcher, M., Bilitewski, U., & Schmid, R. D. (1992). Use of a fibreoptic immunosensor for the detection of pesticides. Sensors and Actuators B: Chemical, 7(1-3), 509-512. doi: 10.1016/09254005(92)80354-Z.

##submission.downloads##

Опубліковано

2018-12-21

Як цитувати

Martseniuk, V. P., Klos-Witkowska, A., Sverstiuk, A. S., & Bihunyak, T. V. (2018). ПРИНЦИПИ, МЕТОДИ ТА ГАЛУЗІ МЕДИКО-БІОЛОГІЧНИХ ЗАСТОСУВАНЬ ОПТИЧНИХ ІМУНОСЕНСОРІВ. Медична інформатика та інженерія, (2), 28–36. https://doi.org/10.11603/mie.1996-1960.2018.2.9289

Номер

Розділ

Статті